Skip to main content
Log in

Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Proper blood flow patterns are critical for normal cardiac morphogenesis, a process that occurs rapidly in order to support further development of all tissue and organs. Previously, intracardiac fluid forces have been shown to play a critical role in cardiac morphogenesis. Altered blood flow in early development can result in an array of cardiac defects including ventricular septal defects, valve malformations, and impaired cardiac looping. However, given the dynamic and highly transient nature of cardiac morphogenesis, time dependency of the mechanical environment as an epigenetic factor in relation to intracardiac forces must be significant. Here, we show that abnormal cardiac loading adversely influences cardiac morphology only during certain time windows, thus confirming that mechanical factors are a time-dependent epigenetic factor. To illustrate this, groups of zebrafish embryos were spaced at 6-h increments from 24 to 48 h post-fertilization (hpf) in which embryos were centrifuged to generate a noninvasive alteration of cardiac preload in addition to an overall hypergravity environment. We found that earlier and later treatment groups responded with altered morphology and function, while the group with altered preload from 30 to 36 hpf had no effect. These results demonstrate the inherently time-dependent nature of epigenetic factors as pertaining to intracardiac forces and external mechanical factors. Further, it underscores the highly coupled nature of programmed biology and mechanical forces during cardiac morphogenesis. Future studies with respect to surgical correction during cardiac morphogenesis must consider timing to optimize therapeutic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Antkiewicz DS, Peterson RE, Heideman W (2006) Blocking expression of AHR2 and ARNT1 in zebrafish larvae protects against cardiac toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Sci 94:175–182

    Article  Google Scholar 

  • Bagatto B, Burggren W (2006) A three-dimensional functional assessment of heart and vessel development in the Larva of the Zebrafish (Danio rerio). Physiol Biochem Zool 79:194–201

    Article  Google Scholar 

  • Bagatto B, Francl J, Liu B, Liu Q (2006) Cadherin2 (N-cadherin) plays an essential role in zebrafish cardiovascular development. BMC Dev Biol 6:23

    Article  Google Scholar 

  • Bakkers J (2011) Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 91:279–288. doi:10.1093/cvr/cvr098

    Article  Google Scholar 

  • Broekhuizen MLA, Hogers B, DeRuiter MC, Poelmann RE, Gittenberger-De Groot AC, Wladimiroff JW (1999) Altered hemodynamics in chick embryos after extraembryonic venous obstruction. Ultrasound Obstet Gynecol 13:437–445. doi:10.1046/j.1469-0705.1999.13060437.x

  • Chan J, Mably JD (2011) Dissection of cardiovascular development and disease pathways in zebrafish. In: Chang KT, Min KT (eds) Animal models of human disease, vol 100. Progress in molecular biology and translational science, pp 111–153. doi:10.1016/b978-0-12-384878-9.00004-2

  • Driever W et al (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46

  • Gessner IH (1966) Spectrum of congenital cardiac anomalies produced in chick embryos by mechanical interference with cardiogenesis. Circ Res 18:625–633. doi:10.1161/01.res.18.6.625

    Article  Google Scholar 

  • Groenendijk BCW, Van der Heiden K, Hierck BP, Poelmann RE (2007) The role of shear stress on ET-1, KLF2, and NOS-3 expression in the developing cardiovascular system of chicken embryos in a venous Ligation model. Physiology 22:380–389. doi:10.1152/physiol.00023.2007

    Article  Google Scholar 

  • Hogers B, DeRuiter MC, Gittenberger-de Groot AC, Poelmann RE (1999) Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal. Cardiovasc Res 41:87–99

  • Hogers B, DeRuiter MC, GittenbergerdeGroot AC, Poelmam RE (1997) Unilateral vitelline vein ligation alters intracardiac blood flow patterns and morphogenesis in the chick embryo. Circul Res 80:473–481

    Article  Google Scholar 

  • Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177. doi:10.1038/nature01282

    Article  Google Scholar 

  • Hu N, Yost HJ, Clark EB (2001) Cardiac morphology and blood pressure in the adult zebrafish. Anat Rec 264:1–12. doi:10.1002/ar.1111

    Article  Google Scholar 

  • Johnson BM, Garrity DM, Dasi LP (2013a) Quantifying function in the early embryonic heart. J Biomech Eng Trans Asme 135. doi:10.1115/1.4023701

  • Johnson BM, Garrity DM, Dasi LP (2013b) The transitional cardiac pumping mechanics in the embryonic heart cardiovascular engineering and technology

  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203:253–310

    Article  Google Scholar 

  • Liebling M et al (2006) Rapid three-dimensional imaging and analysis of the beating embryonic heart reveals functional changes during development. Dev Dyn 235:2940–2948. doi:10.1002/dvdy.20926

    Article  Google Scholar 

  • Malone MH, Sciaky N, Stalheim L, Hahn KM, Linney E, Johnson GL (2007) Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol 7:40

    Article  Google Scholar 

  • Manner J, Wessel A, Yelbuz TM (2010) How does the tubular embryonic heart work? Looking for the physical mechanism generating unidirectional blood flow in the valveless embryonic heart tube. Dev Dyn 239:1035–1046. doi:10.1002/dvdy.22265

    Article  Google Scholar 

  • Parrie LE, Renfrew EM, Vander Wal A, Mueller RL, Garrity DM (2013) Zebrafish tbx5 paralogs demonstrate independent essential requirements in cardiac and pectoral fin development. Dev Dyn 242:485–502. doi:10.1002/dvdy.23953

    Article  Google Scholar 

  • Poon KL, Liebling M, Kondrychyn I, Garcia-Lecea M, Korzh V (2010) Zebrafish cardiac enhancer trap lines: new tools for in vivo studies of cardiovascular development and disease. Dev Dyn 239:914–926. doi:10.1002/dvdy.22203

    Article  Google Scholar 

  • Reckova M et al (2003) Hemodynamics is a key epigenetic factor in development of the cardiac conduction system. Circ Res 93:77–85. doi:10.1161/01.res.0000079488.91342.b7

  • Santhanakrishnan A, Miller LA (2011) Fluid dynamics of heart development. Cell Biochem Biophys 61:1–22. doi:10.1007/s12013-011-9158-8

    Article  Google Scholar 

  • Shi Y, Yao J, Young JM, Fee JA, Perucchio R, Taber LA (2014) Bending and twisting the embryonic heart: a computational model for C-looping based on realistic geometry. Front Physiol 5. doi:10.3389/fphys.2014.00297

  • Sluysmans T, Colan SD (2005) Theoretical and empirical derivation of cardiovascular allometric relationships in children. J Appl Physiol 99:445–457. doi:10.1152/japplphysiol.01144.2004

    Article  Google Scholar 

  • Stainier DYR, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish 1. Myocardial fate map and heart tube formation. Development 119:31–40

    Google Scholar 

  • Thisse C, Zon LI (2002) Development—organogenesis—heart and wood formation from the zebrafish point of view. Science 295:457–462. doi:10.1126/science.1063654

    Article  Google Scholar 

  • Tobita K, Garrison JB, Liu LJ, Tinney JP, Keller BB (2005) Three-dimensional myofiber architecture of the embryonic left ventricle during normal development and altered mechanical loads. Anat Rec Part A Discov Mol Cell Evol Biol 283A:193–201. doi:10.1002/ar.a.20133

  • Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4(12):1238–1246

    Article  Google Scholar 

  • Westerfield M (1995) The zebrafish book. University of Oregon Press, Eugene

    Google Scholar 

Download references

Acknowledgments

We acknowledge funding from the National Science Foundation (Award # 1235305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi Prasad Dasi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 7177 KB)

Supplementary material 2 (wmv 7083 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, B., Bark, D., Van Herck, I. et al. Altered mechanical state in the embryonic heart results in time-dependent decreases in cardiac function. Biomech Model Mechanobiol 14, 1379–1389 (2015). https://doi.org/10.1007/s10237-015-0681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0681-1

Keywords

Navigation