Skip to main content

Advertisement

Log in

SPH simulations of WBC adhesion to the endothelium: the role of haemodynamics and endothelial binding kinetics

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

A multiscale Lagrangian particle solver introduced in our previous work is extended to model physiologically realistic near-wall cell dynamics. Three-dimensional simulation of particle trajectories is combined with realistic receptor–ligand adhesion behaviour to cover full cell interactions in the vicinity of the endothelium. The selected stochastic adhesion model, which is based on a Monte Carlo acceptance–rejection method, fits in our Lagrangian framework and does not compromise performance. Additionally, appropriate inflow/outflow boundary conditions are implemented for our SPH solver to enable realistic pulsatile flow simulation. The model is tested against in-vitro data from a 3D geometry with a stenosis and sudden expansion. In both steady and pulsatile flow conditions, results show close agreement with the experimental ones. Furthermore we demonstrate, in agreement with experimental observations, that haemodynamics alone does not account for adhesion of white blood cells, in this case U937 monocytic human cells. Our findings suggest that the current framework is fully capable of modelling cell dynamics in large arteries in a realistic and efficient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alón R, Hammer DA, Springer TA (1995) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374(6522):539–542

    Article  Google Scholar 

  • Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66(4):1045–1066

    Article  Google Scholar 

  • Batchelor GK (1967) An introduction to fluid mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618

    Article  Google Scholar 

  • Bell GI, Dembo M, Bongrand P (1984) Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophys J 45(6):1051–1064

    Article  Google Scholar 

  • Bian X, Litvinov S, Qian R, Ellero M, Adams NA (2012) Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Phys Fluids 24:012002

    Article  Google Scholar 

  • Blankenberg S, Barbaux S, Tiret L (2003) Adhesion molecules and atherosclerosis. Atherosclerosis 170(2):191–203

    Article  Google Scholar 

  • Buchanan JR, Kleinstreuer C, Hyun S, Truskey GA (2003) Hemodynamics simulation and identification of susceptible sites of atherosclerotic lesion formation in a model abdominal aorta. J Biomech 36(8):1185–1196

    Article  Google Scholar 

  • Caro CG, Fitz-Gerald JM, Schroter RC (1971) Atheroma and arterial wall shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc Lond B Biol Sci 177(1046):109–133

    Article  Google Scholar 

  • Chen Y, Girdhar G, Shao J-Y (2007) Single membrane tether extraction from adult and neonatal dermal microvascular endothelial cells. Am J Physiol Cell Physiol 292(4):C1272–C1279

    Article  Google Scholar 

  • Chesla SE, Selvaraj P, Zhu C (1998) Measuring two-dimensional receptor–ligand binding kinetics by micropipette. Biophys J 75(3):1553–1572

    Article  Google Scholar 

  • Chiu J-J, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91(1):327–387

    Article  Google Scholar 

  • Chiu J-J, Usami S, Chien S (2009) Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann Med 41(1):19–28

    Article  Google Scholar 

  • Chiu JJ, Chen CN, Lee PL, Yang CT, Chuang HS, Chien S, Usami S (2003) Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J Biomech 36(12):1883–1895

    Article  Google Scholar 

  • Comerford A, David T (2008) Computer model of nucleotide transport in a realistic porcine aortic trifurcation. Ann Biomed Eng 36(7):1175–1187

    Article  Google Scholar 

  • Cox RG, Brenner H (1967) The slow motion of a sphere through a viscous fluid towards a plane surface—II small gap widths, including inertial effects. Chem Eng Sci 22(12):1753–1777

    Article  Google Scholar 

  • Cybulsky MI, Gimbrone MA (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 251(4995):788–791

    Article  Google Scholar 

  • De Fabritiis G, Delgado-Buscalioni R, Coveney PV (2006) Multiscale modeling of liquids with molecular specificity. Phys Rev Lett 97(13):134501

    Article  Google Scholar 

  • Delgado-Buscalioni R, Coveney PV (2003) Continuum-particle hybrid coupling for mass, momentum, and energy transfers in unsteady fluid flow. Phys Rev E 67(4):046704

    Article  Google Scholar 

  • Delgado-Buscalioni R, Dejoan A (2008) Nonreflecting boundaries for ultrasound in fluctuating hydrodynamics of open systems. Phys Rev E 78(4):046708

    Article  Google Scholar 

  • Dembo M (1994) On peeling an adherent cell from a surface. Lect Math Life Sci 24:51–77

    Google Scholar 

  • Dong C, Cao J, Struble EJ, Lipowsky HH (1999) Mechanics of leukocyte deformation and adhesion to endothelium in shear flow. Ann Biomed Eng 27(3):298–312

    Article  Google Scholar 

  • Ellero M, Adams NA (2011) SPH simulations of flow around a periodic array of cylinders confined in a channel. Int J Numer Methods Eng 86(8):1027–1040

    Article  MATH  Google Scholar 

  • Ellero M, Tanner RI (2005) SPH simulations of transient viscoelastic flows at low reynolds number. J Non-Newton Fluid Mech 132(1–3):61–72. ISSN: 0377-0257

  • Ellero M, Espanol P, Flekkøy EG (2003) Thermodynamically consistent fluid particle model for viscoelastic flows. Phys Rev E 68(4):041504

    Article  Google Scholar 

  • Espanol P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E Stat Nonlin Soft Matter Phys 67(2 Pt 2):026705

    Article  Google Scholar 

  • Ethier CR, Simmons CA (2007) Introductory biomechanics: from cells to organisms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Evans E, Berk D, Leung A (1991) Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments. Biophys J 59(4):838–848

    Article  Google Scholar 

  • Fedosov DA, Gompper G (2014) White blood cell margination in microcirculation. Soft Matter 10(17):2961–2970

    Article  Google Scholar 

  • Fedosov DA, Karniadakis GE (2009) Triple-decker: interfacing atomistic–mesoscopic–continuum flow regimes. J Comput Phys 228(4):1157–1171

    Article  MathSciNet  MATH  Google Scholar 

  • Florin E-L, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand–receptor pairs. Science 264(5157):415–417

    Article  Google Scholar 

  • Gholami B, Comerford A, Ellero M (2014) A multiscale SPH particle model of the near-wall dynamics of leukocytes in flow. Int J Numer Methods Biomed Eng 30(1):83–102

    Article  MathSciNet  Google Scholar 

  • Gimbrone MA Jr, Nagel T, Topper JN (1997) Biomechanical activation: an emerging paradigm in endothelial adhesion biology. J Clin Investig 99(8):1809

    Article  Google Scholar 

  • Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics-theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  • Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 112(10):1018–1031

    Google Scholar 

  • Goldman AJ, Cox RG, Brenner H (1967) Slow viscous motion of a sphere parallel to a plane wall—I motion through a quiescent fluid. Chem Eng Sci 22(4):637–651

    Article  Google Scholar 

  • Goldman AJ, Cox RG, Brenner H (1967) Slow viscous motion of a sphere parallel to a plane wall—II Couette flow. Chem Eng Sci 22(4):653–660

    Article  Google Scholar 

  • Goldsmith HL, Karino T (1977) Microscopic considerations: the motions of individual particles. Ann N Y Acad Sci 283(1):241–255

    Article  Google Scholar 

  • Hansson GK, Robertson AKL, Söderberg-Nauclér C (2006) Inflammation and atherosclerosis. Ann Rev Pathol: Mech Dis 1:297–329

    Article  Google Scholar 

  • Hinds MT, Park YJ, Jones SA, Giddens DP, Alevriadou BR (2001) Local hemodynamics affect monocytic cell adhesion to a three-dimensional flow model coated with E-selectin. J Biomech 34(1):95–103

    Article  Google Scholar 

  • Hossain SS, Hughes TJR, Decuzzi P (2014) Vascular deposition patterns for nanoparticles in an inflamed patient-specific arterial tree. Biomech Model Mechanobiol 13(3):585–597

    Article  Google Scholar 

  • Hu XY, Adams NA (2006) Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Phys Fluids 18:101702

    Article  Google Scholar 

  • Hund SJ, Antaki JF (2009) An extended convection diffusion model for red blood cell-enhanced transport of thrombocytes and leukocytes. Phys Med Biol 54(20):6415

    Article  Google Scholar 

  • Khismatullin DB (2009) The cytoskeleton and deformability of white blood cells. Curr Top Membr 64:47–111

    Article  Google Scholar 

  • Khismatullin DB, Truskey GA (2005) Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: effects of cell deformability and viscoelasticity. Phys Fluids 17(3):031505 (1994-present)

    Article  Google Scholar 

  • Kim M-C, Nam JH, Lee C-S (2006) Near-wall deposition probability of blood elements as a new hemodynamic wall parameter. Ann Biomed Eng 34(6):958–970

  • Koumoutsakos P (2005) Multiscale flow simulations using particles. Annu Rev Fluid Mech 37:457–487. ISSN: 0066-4189

  • Kumar A, Henriquez Rivera RG, Graham MD (2014) Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity. J Fluid Mech 738:423–462

    Article  Google Scholar 

  • Kunov MJ, Steinmass DA, Ethier CR (1996) Particle volumetric residence time calculations in arterial geometries. J Biomech Eng 118(2):158–164

    Article  Google Scholar 

  • Lastiwka M, Basa M, Quinlan NJ (2009) Permeable and non-reflecting boundary conditions in SPH. Int J Numer Methods Fluids 61(7):709–724

    Article  MathSciNet  MATH  Google Scholar 

  • Lee S-W, Antiga L, Spence JD, Steinman DA (2008) Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39(8):2341–2347

    Article  Google Scholar 

  • Lei H, Fedosov DA, Karniadakis GE (2011) Time-dependent and outflow boundary conditions for dissipative particle dynamics. J Comput Phys. 230(10):3765–3779. ISSN: 0021-9991

  • Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105(9):1135–1143

    Article  Google Scholar 

  • Litvinov S, Ellero M, Hu X, Adams NA (2009) Self-diffusion coefficient in smoothed dissipative particle dynamics. J Chem Phys 130:021101

    Article  Google Scholar 

  • Longest PW (2002) Computational analyses of transient particle hemodynamics with applications to femoral bypass graft designs. PhD thesis, MAE Department, NC State University, Raleigh, NC

  • Longest PW, Kleinstreuer C (2003) Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut. Med Eng Phys 25(10):843–858

    Article  Google Scholar 

  • Longest PW, Kleinstreuer C (2003) Comparison of blood particle deposition models for non-parallel flow domains. J Biomech 36(3):421–430. ISSN: 0021-9290

  • Longest PW, Kleinstreuer C, Truskey GA, Buchanan JR (2003) Relation between near-wall residence times of monocytes and early lesion growth in the rabbit aorto–celiac junction. Ann Biomed Eng 31(1):53–64

    Article  Google Scholar 

  • Longest PW, Kleinstreuer C, Buchanan JR (2004) Efficient computation of micro-particle dynamics including wall effects. Comput Fluids 33(4):577–601. ISSN: 0045-7930

  • Loth E (2000) Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog Energy Combust Sci 26(3):161–223. ISSN: 0360-1285

  • Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024. ISSN: 0004-6256

  • Lyczkowski RW, Alevriadou BR, Horner M, Panchal CB, Shroff SG (2009) Application of multiphase computational fluid dynamics to analyze monocyte adhesion. Ann Biomed Eng 37(8):1516–1533

    Article  Google Scholar 

  • Matas JP, Morris JF, Guazzelli E (2004) Inertial migration of rigid spherical particles in poiseuille flow. J Fluid Mech 515:171–195. ISSN: 1469-7645

  • McKinney VZ, Rinker KD, Truskey GA (2006) Normal and shear stresses influence the spatial distribution of intracellular adhesion molecule-1 expression in human umbilical vein endothelial cells exposed to sudden expansion flow. J Biomech 39(5):806–817

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  • Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  • Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13(10):709–721

    Article  Google Scholar 

  • Moore KL, Patel KD, Bruehl RE, Li F, Johnson DA, Lichenstein HS, Cummings RD, Bainton DF, McEver RP (1995) P-selectin glycoprotein ligand-1 mediates rolling of human neutrophils on P-selectin. J Cell Biol 128(4):661–671

    Article  Google Scholar 

  • Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226. ISSN: 0021-9991

  • Moyle KR, Antiga L, Steinman DA (2006) Inlet conditions for image-based CFD models of the carotid bifurcation: is it reasonable to assume fully developed flow? J Biomech Eng 128(3):371–379

    Article  Google Scholar 

  • Nerem RM, Cornhill JF (1980) The role of fluid mechanics in atherogenesis. J Biomech Eng 102(3):181–189

    Article  Google Scholar 

  • Nerem RM, Alexander RW, Chappell DC, Medford RM, Varner SE, Taylor WR (1998) The study of the influence of flow on vascular endothelial biology. Am J Med Sci 316(3):169–175

    Article  Google Scholar 

  • Norman KE, Moore KL, McEver RP, Ley K (1995) Leukocyte rolling in vivo is mediated by P-selectin glycoprotein ligand-1. Blood 86(12):4417–4421

    Google Scholar 

  • Packard R, Libby P (2008) Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 54(1):24–38

    Article  Google Scholar 

  • Park EY, Smith MJ, Stropp ES, Snapp KR, DiVietro JA, Walker WF, Schmidtke DW, Diamond SL, Lawrence MB (2002) Comparison of PSGL-1 microbead and neutrophil rolling: microvillus elongation stabilizes P-selectin bond clusters. Biophys J 82(4):1835–1847

    Article  Google Scholar 

  • Piper JW, Swerlick RA, Zhu C (1998) Determining force dependence of two-dimensional receptor–ligand binding affinity by centrifugation. Biophys J 74(1):492–513

    Article  Google Scholar 

  • Pritchard WF, Davies PF, Derafshi Z, Polacek DC, Tsao R, Dull RO, Jones SA, Giddens DP (1995) Effects of wall shear stress and fluid recirculation on the localization of circulating monocytes in a three-dimensional flow model. J Biomech 28(12):1459–1469

    Article  Google Scholar 

  • Ramachandran V, Williams M, Yago T, Schmidtke DW, McEver RP (2004) Dynamic alterations of membrane tethers stabilize leukocyte rolling on P-selectin. Proc Natl Acad Sci USA 101(37):13519–13524

    Article  Google Scholar 

  • Rinker KD, Prabhakar V, Truskey GA (2001) Effect of contact time and force on monocyte adhesion to vascular endothelium. Biophys J 80(4):1722–1732

    Article  Google Scholar 

  • Ross R (1999) Atherosclerosis? An inflammatory disease. N Engl J Med 340(2):115–126

    Article  Google Scholar 

  • Rouleau L, Copland IB, Tardif J-C, Mongrain R, Leask RL (2010) Neutrophil adhesion on endothelial cells in a novel asymmetric stenosis model: effect of wall shear stress gradients. Ann Biomed Eng 38(9):2791–2804

    Article  Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22(02):385–400

    Article  MATH  Google Scholar 

  • Sazonov I, Yeo SY, Bevan RLT, Xie X, van Loon R, Nithiarasu P (2011) Modelling pipeline for subject-specific arterial blood flow—a review. Int J Numer Methods Biomed Eng 27(12):1868–1910

    Article  MathSciNet  MATH  Google Scholar 

  • Segré G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in Poiseuille flow part 2. Experimental results and interpretation. J Fluid Mech 14(01):136–157

    Article  Google Scholar 

  • Shahriari S, Kadem L, Rogers BD, Hassan I (2012) Smoothed particle hydrodynamics method applied to pulsatile flow inside a rigid two-dimensional model of left heart cavity. Int J Numer Methods Biomed Eng 28(11):1121–1143

    Article  MathSciNet  Google Scholar 

  • Shao J-Y, Ting-Beall HP, Hochmuth RM (1998) Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci 95(12):6797–6802

    Article  Google Scholar 

  • Simon SI, Goldsmith HL (2002) Leukocyte adhesion dynamics in shear flow. Ann Biomed Eng 30(3):315–332

    Article  Google Scholar 

  • Skilbeck C, Westwood SM, Walker PG, David T, Nash GB (2001) Population of the vessel wall by leukocytes binding to P-selectin in a model of disturbed arterial flow. Arterioscler Thromb Vasc Biol 21(8):1294

    Article  Google Scholar 

  • Skilbeck CA, Walker PG, David T, Nash GB (2004) Disturbed flow promotes deposition of leucocytes from flowing whole blood in a model of a damaged vessel wall. Br J Haematol 126(3):418–427

    Article  Google Scholar 

  • Spillmann CM, Lomakina E, Waugh RE (2004) Neutrophil adhesive contact dependence on impingement force. Biophys J 87(6):4237–4245

    Article  Google Scholar 

  • Sundd P, Pospieszalska MK, Cheung LS, Konstantopoulos K, Ley K (2011) Biomechanics of leukocyte rolling. Biorheology 48(1):1–35

    Google Scholar 

  • Tabas I, Williams KJ, Borén J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis update and therapeutic implications. Circulation 116(16):1832–1844

    Article  Google Scholar 

  • Tambasco M, Steinman DA (2002) On assessing the quality of particle tracking through computational fluid dynamic models. J Biomech Eng 124(2):166–175

    Article  Google Scholar 

  • Thomas JB, Antiga L, Che SL, Milner JS, Steinman DA, Spence JD, Rutt BK, Steinman DA (2005) Variation in the carotid bifurcation geometry of young versus older adults implications for geometric risk of atherosclerosis. Stroke 36(11):2450–2456

    Article  Google Scholar 

  • Vázquez-Quesada A, Ellero M (2012) SPH simulations of a viscoelastic flow around a periodic array of cylinders confined in a channel. J Non-Newton Fluid Mech 167–168:1–8

    Article  Google Scholar 

  • Vázquez-Quesada A, Ellero M, Español P (2009) Consistent scaling of thermal fluctuations in smoothed dissipative particle dynamics. J Chem Phys 130:034901

    Article  Google Scholar 

  • Zhao H, Shaqfeh ESG, Narsimhan V (2012) Shear-induced particle migration and margination in a cellular suspension. Phys Fluids 24(1):011902

    Article  Google Scholar 

  • Zhu C (2000) Kinetics and mechanics of cell adhesion. J Biomech 33(1):23–33. ISSN: 0021-9290

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Comerford.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, B., Comerford, A. & Ellero, M. SPH simulations of WBC adhesion to the endothelium: the role of haemodynamics and endothelial binding kinetics. Biomech Model Mechanobiol 14, 1317–1333 (2015). https://doi.org/10.1007/s10237-015-0676-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0676-y

Keywords

Navigation