Skip to main content

Advertisement

Log in

Permeability and shear modulus of articular cartilage in growing mice

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Understanding the changes in mechanical tissues properties during growth is a critical step in advancing strategies for orthopedics and for cell- and biomaterial- based therapies dedicated to cartilage repair. We hypothesize that at the microscale, the articular cartilage tissue properties of the mouse (i.e., shear modulus and permeability) change with the growth and are dependent on location within the joint. We tested cartilage on the medial femoral condyle and lateral femoral condyle of seven C57Bl6 mice at different ages (2, 3, 5, 7, 9, 12, and 17 weeks old) using a micro-indentation test. Results indicated that permeability decreased with age from 2 to 17 weeks. Shear modulus reached a peak at the end of the growth (9 weeks). Within an age group, shear modulus was higher in the MFC than in the LFC, but permeability did not change. We have developed a method that can measure natural alterations in cartilage material properties in a murine joint, which will be useful in identifying changes in cartilage mechanics with degeneration, pathology, or treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Armstrong CG, Mow VC (1982) Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content. J Bone Jt Surg Am 64:88–94

    Google Scholar 

  • Bank RA, Bayliss MT, Lafeber FP, Maroudas A, Tekoppele JM (1998) Ageing and zonal variation in post-translational modification of collagen in normal human articular cartilage. The age-related increase in non-enzymatic glycation affects biomechanical properties of cartilage. Biochem J 330(Pt 1):345–351

  • Berteau J-P, Baron C, Pithioux M, Launay F, Chabrand P, Lasaygues P (2014) In vitro ultrasonic and mechanic characterization of the modulus of elasticity of children cortical bone. Ultrasonics 54:1270–1276

    Article  Google Scholar 

  • Brommer H, Brama PAJ, Laasanen MS, Helminen HJ, van Weeren PR, Jurvelin JS (2005) Functional adaptation of articular cartilage from birth to maturity under the influence of loading: a biomechanical analysis. Equine Vet J 37:148–154

    Article  Google Scholar 

  • Buckwalter JA, Mankin HJ, Grodzinsky AJ (2005) Articular cartilage and osteoarthritis. Inst Course Lect 54:465–480

    Google Scholar 

  • Burgin LV, Edelsten L, Aspden RM (2014) The mechanical and material properties of elderly human articular cartilage subject to impact and slow loading. Med Eng Phys 36:226–232

    Article  Google Scholar 

  • Caine DJ, Golightly YM (2011) Osteoarthritis as an outcome of paediatric sport: an epidemiological perspective. Br J Sports Med 45:298–303

    Article  Google Scholar 

  • Caliari SR, Mozdzen LC, Armitage O, Oyen ML, Harley BAC (2014) Award Winner in the Young Investigator Category, 2014 Society for Biomaterials Annual Meeting and Exposition, Denver, Colorado, April 16–19, 2014: Periodically perforated core-shell collagen biomaterials balance cell infiltration, bioactivity, and mechanical properties. J Biomed Mater Res A 102:917–927

    Article  Google Scholar 

  • Chan EF, Harjanto R, Asahara H, Inoue N, Masuda K, Bugbee WD, Firestein GS, Hosalkar HS, Lotz MK, Sah RL (2012) Structural and functional maturation of distal femoral cartilage and bone during postnatal development and growth in humans and mice. Orthop Clin N Am 43:173–185

    Article  Google Scholar 

  • Christensen SE, Coles JM, Zelenski NA, Furman BD, Leddy HA, Zauscher S, Bonaldo P, Guilak F (2012) Altered trabecular bone structure and delayed cartilage degeneration in the knees of collagen VI null mice. PLoS ONE 7(3): e33397. doi:10.1371/journal.pone.0033397

  • Coles JM, Zhang L, Blum JJ, Warman ML, Jay GD, Guilak F, Zauscher S (2010) Loss of cartilage structure, stiffness, and frictional properties in mice lacking PRG4. Arthr Rheum 62(6):1666–1674. doi:10.1002/art.27436

    Article  Google Scholar 

  • Guccione AA, Felson DT, Anderson JJ, Anthony JM, Zhang Y, Wilson PW, Kelly-Hayes M, Wolf PA, Kreger BE, Kannel WB (1994) The effects of specific medical conditions on the functional limitations of elders in the Framingham study. Am J Pub Health 84:351–358

    Article  Google Scholar 

  • Hamann N, Zaucke F, Dayakli M, Brüggemann GP, Niehoff A (2013) Growth-related structural, biochemical, and mechanical properties of the functional bone-cartilage unit. J Anat 222(2):248–259. doi:10.1111/joa.12003

    Article  Google Scholar 

  • Hoch DH, Grodzinsky AJ, Koob TJ, Albert ML, Eyre DR (1983) Early changes in material properties of rabbit articular cartilage after meniscectomy. J Orthop Res Off Publ Orthop Res Soc 1:4–12

    Article  Google Scholar 

  • Hu K, Xu L, Cao L, Flahiff CM, Brussiau J, Ho K, Setton LA, Youn I, Guilak F, Olsen BR et al (2006) Pathogenesis of osteoarthritis-like changes in the joints of mice deficient in type IX collagen. Arthritis Rheum 54:2891–2900

    Article  Google Scholar 

  • Hu Y, Zhao X, Vlassak JJ, Suo Z (2010) Using indentation to characterize the poroelasticity of gels. Appl Phys Lett 96:121904

    Article  Google Scholar 

  • Julkunen P, Harjula T, Iivarinen J, Marjanen J, Seppänen K, Närhi T, Arokoski J, Lammi MJ, Brama PA, Jurvelin JS et al (2009) Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage. Osteoarthr Cartil OARS Osteoarthr Res Soc 17:1628–1638

    Article  Google Scholar 

  • Keene DR, Oxford JT, Morris NP (1995) Ultrastructural localization of collagen types II, IX, and XI in the growth plate of human rib and fetal bovine epiphyseal cartilage: type XI collagen is restricted to thin fibrils. J Histochem Cytochem Off J Histochem Soc 43:967–979

    Article  Google Scholar 

  • Khan IM, Francis L, Theobald PS, Perni S, Young RD, Prokopovich P, Conlan RS, Archer CW (2013) In vitro growth factor-induced bio engineering of mature articular cartilage. Biomaterials 34:1478–1487

    Article  Google Scholar 

  • Koester KJ, Barth HD, Ritchie RO (2011) Effect of aging on the transverse toughness of human cortical bone: evaluation by R-curves. J Mech Behav Biomed Mater 4:1504–1513

    Article  Google Scholar 

  • Korhonen RK, Laasanen MS, Töyräs J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35:903–909

    Article  Google Scholar 

  • Kulin RM, Jiang F, Vecchio KS (2011) Effects of age and loading rate on equine cortical bone failure. J Mech Behav Biomed Mater 4:57–75

    Article  Google Scholar 

  • Kuroki H, Nakagawa Y, Mori K, Kobayashi M, Yasura K, Okamoto Y, Mizuno Y, Ando K, Ikeuchi K, Nakamura T (2006) Maturation-dependent change and regional variations in acoustic stiffness of rabbit articular cartilage: an examination of the superficial collagen-rich zone of cartilage. Osteoarthritis Cartilage 14:784–792

    Article  Google Scholar 

  • Kutz M (2003) Standard handbook of biomedical engineering and design. McGraw-Hill, New York

    Google Scholar 

  • Lam FC, Longnecker MT (1983) A modified Wilcoxon rank sum test for paired data. Biometrika 70:510

    Article  MathSciNet  Google Scholar 

  • Lilledahl MB, Pierce DM, Ricken T, Holzapfel GA, CdeL Davies (2011) Structural analysis of articular cartilage using multiphoton microscopy: input for biomechanical modeling. IEEE Trans Med Imaging 30:1635–1648

    Article  Google Scholar 

  • Manda K, Eriksson A (2014) Modeling of constrained articular cartilage growth in an intact knee with focal knee resurfacing metal implant. Biomech Model Mechanobiol 13:599–613

    Article  Google Scholar 

  • Marijnissen ACA, van Roermund PM, Verzijl N, Tekoppele JM, Bijlsma JWJ, Lafeber FPJG (2002) Steady progression of osteoarthritic features in the canine groove model. Osteoarthr Cartil OARS Osteoarthr Res Soc 10:282–289

    Article  Google Scholar 

  • Maroudas A, Bullough P, Swanson, Freeman MA (1968) The permeability of articular cartilage. J Bone Jt Surg Br 50:166–177

    Google Scholar 

  • Mastbergen SC, Pollmeier M, Fischer L, Vianen ME, Lafeber FPJG (2008) The groove model of osteoarthritis applied to the ovine fetlock joint. Osteoarthr Cartil OARS Osteoarthr Res Soc 16:919–928

    Article  Google Scholar 

  • Mattice JM, Lau AG, Oyen ML, Kent RW (2011) Spherical indentation load-relaxation of soft biological tissues. J Mater Res 21:2003–2010

    Article  Google Scholar 

  • Mow VC, Ratcliffe A, Poole AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13:67–97

    Article  Google Scholar 

  • Nyman JS, Gorochow LE, Adam Horch R, Uppuganti S, Zein-Sabatto A, Manhard MK, Does MD (2013) Partial removal of pore and loosely bound water by low-energy drying decreases cortical bone toughness in young and old donors. J Mech Behav Biomed Mater 22:136–145

    Article  Google Scholar 

  • Oyen ML (2005) Spherical indentation creep following ramp loading. J Mater Res 20:2094–2100

    Article  Google Scholar 

  • Pierce DM, Ricken T, Holzapfel GA (2013) A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications. Comput Methods Biomech Biomed Eng 16:1344–1361

    Article  Google Scholar 

  • Räsänen T, Messner K (1996) Regional variations of indentation stiffness and thickness of normal rabbit knee articular cartilage. J Biomed Mater Res 31:519–524

    Article  Google Scholar 

  • Rodriguez-Florez N, Oyen ML, Shefelbine SJ (2013) Insight into differences in nanoindentation properties of bone. J Mech Behav Biomed Mater 18:90–99

    Article  Google Scholar 

  • Roemhildt ML, Coughlin KM, Peura GD, Fleming BC, Beynnon BD (2006) Material properties of articular cartilage in the rabbit tibial plateau. J Biomech 39:2331–2337

    Article  Google Scholar 

  • Scott WN, Insall JN (2012) Insall & Scott surgery of the knee. Elsevier/Churchill Livingstone, Philadelphia

    Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  MathSciNet  MATH  Google Scholar 

  • Stolz M, Gottardi R, Raiteri R, Miot S, Martin I, Imer R, Staufer U et al (2009) Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy. Nat Nanotechnol 4:186–192. doi:10.1038/nnano.2008.410

    Article  Google Scholar 

  • Strange DGT, Oyen ML (2012) Composite hydrogels for nucleus pulposus tissue engineering. J Mech Behav Biomed Mater 11:16–26

    Article  Google Scholar 

  • Van Turnhout MC, Schipper H, Engel B, Buist W, Kranenbarg S, van Leeuwen JL (2010) Postnatal development of collagen structure in ovine articular cartilage. BMC Dev Biol 10:62

    Article  Google Scholar 

  • Wang H (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. princeton University Press, Princeton

    Google Scholar 

  • Wei X, Räsänen T, Messner K (1998) Maturation-related compressive properties of rabbit knee articular cartilage and volume fraction of subchondral tissue. Osteoarthr Cartil OARS Osteoarthr Res Soc 6:400–409. doi:10.1053/joca.1998.0143

  • Williamson AK, Chen AC, Masuda K, Thonar EJ-MA, Sah RL (2003) Tensile mechanical properties of bovine articular cartilage: variations with growth and relationships to collagen network components. J Orthop Res Off Publ Orthop Res Soc 21:872–880

    Article  Google Scholar 

  • Zhu W, Mow VC, Koob TJ, Eyre DR (1993) Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J Orthop Res 11:771–781

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-Ph. Berteau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berteau, JP., Oyen, M. & Shefelbine, S.J. Permeability and shear modulus of articular cartilage in growing mice. Biomech Model Mechanobiol 15, 205–212 (2016). https://doi.org/10.1007/s10237-015-0671-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-015-0671-3

Keywords

Navigation