Bone cell mechanosensation of fluid flow stimulation: a fluid–structure interaction model characterising the role integrin attachments and primary cilia

Abstract

Load-induced fluid flow acts as an important biophysical signal for bone cell mechanotransduction in vivo, where the mechanical environment is thought to be monitored by integrin and primary cilia mechanoreceptors on the cell body. However, precisely how integrin- and primary cilia-based mechanosensors interact with the surrounding fluid flow stimulus and ultimately contribute to the biochemical response of bone cells within either the in vitro or in vivo environment remains poorly understood. In this study, we developed fluid–structure interaction models to characterise the deformation of integrin- and primary cilia-based mechanosensors in bone cells under fluid flow stimulation. Under in vitro fluid flow stimulation, these models predicted that integrin attachments on the cell–substrate interface were highly stimulated \((\varepsilon _\mathrm{eq}> 200{,}000\,\upmu \upvarepsilon )\), while the presence of a primary cilium on the cell also resulted in significant strain amplifications, arising at the ciliary base. As such, these mechanosensors likely play a role in mediating bone mechanotransduction in vitro. Under in vivo fluid flow stimulation, integrin attachments along the canalicular wall were highly stimulated and likely play a role in mediating cellular responses in vivo. The role of the primary cilium as a flow sensor in vivo depended upon its configuration within the lacunar cavity. Specifically, our results showed that a short free-standing primary cilium could not effectively fulfil a flow sensing role in vivo. However, a primary cilium that discretely attaches the lacunar wall can be highly stimulated, due to hydrodynamic pressure in the lacunocanalicular system and, as such, could play a role in mediating bone mechanotransduction in vivo.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech 42(12):1989–1995. doi:10.1016/j.jbiomech.2009.04.034

    Article  Google Scholar 

  2. Alford AI, Jacobs CR, Donahue HJ (2003) Oscillating fluid flow regulates gap junction communication in osteocytic MLO-Y4 cells by an ERK1/2 MAP kinase-dependent mechanism\_T. Bone 33(1):64–70. doi:10.1016/s8756-3282(03)00167-4

    Article  Google Scholar 

  3. Anderson EJ, Knothe Tate ML (2008) Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes. J Biomech 41(8):1736–1746. doi:10.1016/j.jbiomech.2008.02.035

    Article  Google Scholar 

  4. Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJWA, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315(4):823–829. doi:10.1016/j.bbrc.2004.01.138

    Article  Google Scholar 

  5. Bacabac RG, Smit TH, Cowin SC, Van Loon JJWA, Nieuwstadt FTM, Heethaar R, Klein-Nulend J (2005) Dynamic shear stress in parallel-plate flow chambers. J Biomech 38(1):159–167. doi:10.1016/j.jbiomech.2004.03.020

    Article  Google Scholar 

  6. Bakker AD, Soejima K, Klein-Nulend J, Burger EH (2001) The production of nitric oxide and prostaglandin E2 by primary bone cells is shear stress dependent. J Biomech 34(5):671–677. doi:10.1016/s0021-9290(00)00231-1

    Article  Google Scholar 

  7. Barreto S, Clausen CH, Perrault CM, Fletcher DA, Lacroix D (2013a) A multi-structural single cell model of force-induced interactions of cytoskeletal components. Biomaterials 34(26):6119–6126. doi:10.1016/j.biomaterials.2013.04.022

  8. Barreto S, Perrault CM, Lacroix D (2013b) Structural finite element analysis to explain cell mechanics variability. J Mech Behav Biomed Mater. doi:10.1016/j.jmbbm.2013.11.022

  9. Besschetnova TY, Kolpakova-Hart E, Guan Y, Zhou J, Olsen BR, Shah JV (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 20(2):182–187. doi:10.1016/j.cub.2009.11.072

    Article  Google Scholar 

  10. Burra S, Nicolella DP, Jiang JX (2011) Dark horse in osteocyte biology: glycocalyx around the dendrites is critical for osteocyte mechanosensing. Commun Integr Biol 4(1):48–50. doi:10.4161/cib.4.1.13646

    Article  Google Scholar 

  11. Charras GT, Williams BA, Sims SM, Horton MA (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys J 87(4):2870–2884. doi:10.1529/biophysj.104.040436

    Article  Google Scholar 

  12. Cheng B, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX (2001) Expression of functional gap junctions and regulation by fluid flow in osteocyte-like MLO-Y4 cells. J Bone Miner Res 16(2):249–259. doi:10.1359/jbmr.2001.16.2.249

    Article  Google Scholar 

  13. Chung BJ, Robertson AM, Peters DG (2003) The numerical design of a parallel plate flow chamber for investigation of endothelial cell response to shear stress. Comput Struct 81(8–11):535–546. doi:10.1016/s0045-7949(02)00416-9

    Article  Google Scholar 

  14. Downs ME, Nguyen AM, Herzog FA, Hoey DA, Jacobs CR (2012) An experimental and computational analysis of primary cilia deflection under fluid flow. Comput Methods Biomech Biomed Eng 1–9. doi:10.1080/10255842.2011.653784

  15. el Haj AJ, Minter SL, Rawlinson SCF, Suswillo R, Lanyon LE (1990) Cellular responses to mechanical loading in vitro. J Bone Miner Res 5(9):923–932. doi:10.1002/jbmr.5650050905

    Article  Google Scholar 

  16. Gardinier J, Majumdar S, Duncan R, Wang L (2009) Cyclic hydraulic pressure and fluid flow differentially modulate cytoskeleton re-organization in MC3T3 osteoblasts. Cell Mol Bioeng 2(1):133–143. doi:10.1007/s12195-008-0038-2

    Article  Google Scholar 

  17. Guilak F, Tedrow JR, Burgkart R (2000) Viscoelastic properties of the cell nucleus. Biochem Biophys Res Commun 269(3):781–786. doi:10.1006/bbrc.2000.2360

    Article  Google Scholar 

  18. Haugh MG, McNamara LM (2012) The role of integrins in osteocyte response to mechanical stimulus. In: ASME 2012 summer bioengineering conference. American Society of Mechanical Engineers

  19. Hoey DA, Kelly DJ, Jacobs CR (2011) A role for the primary cilium in paracrine signaling between mechanically stimulated osteocytes and mesenchymal stem cells. Biochem Biophys Res Commun 412(1):182–187. doi:10.1016/j.bbrc.2011.07.072

    Article  Google Scholar 

  20. Hoey DA, Downs ME, Jacobs CR (2012a) The mechanics of the primary cilium: An intricate structure with complex function. J Biomech 45(1):17–26. doi:10.1016/j.jbiomech.2011.08.008

    Article  Google Scholar 

  21. Hoey DA, Tormey S, Ramcharan S, O’Brien FJ, Jacobs CR (2012b) Primary cilia-mediated mechanotransduction in human mesenchymal stem cells. Stem Cells 30(11):2561–2570. doi:10.1002/stem.1235

  22. Hung CT, Allen FD, Pollack SR, Brighton CT (1996) What is the role of the convective current density in the real-time calcium response of cultured bone cells to fluid flow? J Biomech 29(11):1403–1409. doi:10.1016/0021-9290(96)84535-0

    Article  Google Scholar 

  23. Jensen CG, Poole CA, McGlashan SR, Marko M, Issa ZI, Vujcich KV, Bowser SS (2004) Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 28(2):101–110. doi:10.1016/j.cellbi.2003.11.007

    Article  Google Scholar 

  24. Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217(2):640–648. doi:10.1006/bbrc.1995.2822

    Article  Google Scholar 

  25. Klein-Nulend J, van der Plas A, Semeins C, Ajubi N, Frangos J, Nijweide P, Burger E (1995b) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9(5):441–445

    Google Scholar 

  26. Kwon RY, Meays DR, Tang WJ, Frangos JA (2010a) Microfluidic enhancement of intramedullary pressure increases interstitial fluid flow and inhibits bone loss in hindlimb suspended mice. J Bone Miner Res 25(8):1798–1807. doi:10.1002/jbmr.74

    Article  Google Scholar 

  27. Kwon RY, Temiyasathit S, Tummala P, Quah CC, Jacobs CR (2010b) Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic AMP in bone cells. FASEB J 24(8):2859–2868. doi:10.1096/fj.09-148007

    Article  Google Scholar 

  28. Lanyon LE (1984) Functional strain as a determinant for bone remodeling. Calcif Tissue Int 36(1):S56–S61. doi:10.1007/bf02406134

    Article  Google Scholar 

  29. Lee D-Y, Yeh C-R, Chang S-F, Lee P-L, Chien S, Cheng C-K, Chiu J-J (2008) Integrin-mediated expression of bone formation-related genes in osteoblast-like cells in response to fluid shear stress: roles of extracellular matrix, Shc, and mitogen-activated protein kinase. J Bone Miner Res 23(7):1140–1149. doi:10.1359/jbmr.080302

    Article  Google Scholar 

  30. Litzenberger J, Tang W, Castillo A, Jacobs C (2009) Deletion of \(\beta \)1 integrins from cortical osteocytes reduces load-induced bone formation. Cell Mol Bioeng 2(3):416–424. doi: 10.1007/s12195-009-0068-4

    Article  Google Scholar 

  31. Litzenberger J, Kim J-B, Tummala P, Jacobs C (2010) \(\beta \)1 integrins mediate mechanosensitive signaling pathways in osteocytes. Calcif Tissue Int 86(4):325–332. doi: 10.1007/s00223-010-9343-6

    Article  Google Scholar 

  32. Lu XL, Huo B, Chiang V, Guo XE (2012) Osteocytic network is more responsive in calcium signaling than osteoblastic network under fluid flow. J Bone Miner Res 27(3):563–574. doi:10.1002/jbmr.1474

    Article  Google Scholar 

  33. Malone AMD, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104(33):13325–13330. doi:10.1073/pnas.0700636104

  34. McGarry JG, Klein-Nulend J, Mullender MG, Prendergast PJ (2005) A comparison of strain and fluid shear stress in stimulating bone cell responses—a computational and experimental study. FASEB J 19(3):482–484. doi:10.1096/fj.04-2210fje

    Google Scholar 

  35. McGlashan SR, Jensen CG, Poole CA (2006) Localization of extracellular matrix receptors on the chondrocyte primary cilium. J Histochem Cytochem 54(9):1005–1014. doi:10.1369/jhc.5A6866.2006

    Article  Google Scholar 

  36. McNamara LM, Majeska RJ, Weinbaum S, Friedrich V, Schaffler MB (2009) Attachment of osteocyte cell processes to the bone matrix. Anat Rec Adv Integr Anat Evol Biol 292(3):355–363. doi:10.1002/ar.20869

    Article  Google Scholar 

  37. Mullen CA, Haugh MG, Schaffler MB, Majeska RJ, McNamara LM (2013) Osteocyte differentiation is regulated by extracellular matrix stiffness and intercellular separation. J Mech Behav Biomed Mater 28:183–194. doi:10.1016/j.jmbbm.2013.06.013

    Article  Google Scholar 

  38. Nauman EA, Satcher RL, Keaveny TM, Halloran BP, Bikle DD (2001) Osteoblasts respond to pulsatile fluid flow with short-term increases in PGE2 but no change in mineralization. J Appl Physiol 90(5):1849–1854

    Google Scholar 

  39. Owan I, Burr DB, Turner CH, Qiu JY, Tu Y, Onyia JE, Duncan RL (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol Cell Physiol 273(3):C810–C815

    Google Scholar 

  40. Pitsillides AA, Rawlinson SC, Suswillo RF, Bourrin S, Zaman G, Lanyon LE (1995) Mechanical strain-induced NO production by bone cells: a possible role in adaptive bone (re)modeling? FASEB J 9(15):1614–1622

    Google Scholar 

  41. Praetorius HA, Spring KR (2005) A physiological view of the primary cilium. Annu Rev Physiol 67:515–529. doi:10.1146/annurev.physiol.67.040403.101353

    Article  Google Scholar 

  42. Rath AL, Bonewald LF, Ling J, Jiang JX, Van Dyke ME, Nicolella DP (2010) Correlation of cell strain in single osteocytes with intracellular calcium, but not intracellular nitric oxide, in response to fluid flow. J Biomech 43(8):1560–1564. doi:10.1016/j.jbiomech.2010.01.030

    Article  Google Scholar 

  43. Ryder KD, Duncan RL (2001) Parathyroid hormone enhances fluid shear-induced [Ca\(^{2+}\)]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca\(^{2+}\) channels. J Bone Miner Res 16(2):240–248. doi: 10.1359/jbmr.2001.16.2.240

    Article  Google Scholar 

  44. Rydholm S, Zwartz G, Kowalewski JM, Kamali-Zare P, Frisk T, Brismar H (2010) Mechanical properties of primary cilia regulate the response to fluid flow. Am J Physiol Ren Physiol 298(5):F1096–1102. doi:10.1152/ajprenal.00657.2009

    Article  Google Scholar 

  45. Schwartz EA, Leonard ML, Bizios R, Bowser SS (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol Ren Physiol 272(1):F132–F138

    Google Scholar 

  46. Smalt R, Mitchell FT, Howard RL, Chambers TJ (1997) Induction of NO and prostaglandin E2 in osteoblasts by wall-shear stress but not mechanical strain. Am J Physiol Endocrinol Metab 273(4):E751–E758

    Google Scholar 

  47. Song MJ, Dean D, Knothe Tate ML (2010) In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale. PLoS One 5(9):e12796. doi:10.1371/journal.pone.0012796

    Article  Google Scholar 

  48. Song MJ, Brady-Kalnay SM, McBride SH, Phillips-Mason P, Dean D, Knothe Tate ML (2012) Mapping the mechanome of live stem cells using a novel method to measure local strain fields in situ at the fluid–cell interface. PLoS One 7(9):e43601. doi:10.1371/journal.pone.0043601

    Article  Google Scholar 

  49. Sugawara Y, Ando R, Kamioka H, Ishihara Y, Murshid SA, Hashimoto K, Kataoka N, Tsujioka K, Kajiya F, Yamashiro T, Takano-Yamamoto T (2008) The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes. Bone 43(1):19–24. doi:10.1016/j.bone.2008.02.020

    Article  Google Scholar 

  50. Tatsumi S, Ishii K, Amizuka N, Li M, Kobayashi T, Kohno K, Ito M, Takeshita S, Ikeda K (2007) Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab 5(6):464–475. doi:10.1016/j.cmet.2007.05.001

    Article  Google Scholar 

  51. Temiyasathit S, Tang WJ, Leucht P, Anderson CT, Monica SD, Castillo AB, Helms JA, Stearns T, Jacobs CR (2012) Mechanosensing by the primary cilium: deletion of Kif3A reduces bone formation due to loading. PLoS One 7(3):e33368. doi:10.1371/journal.pone.0033368

    Article  Google Scholar 

  52. Thi MM, Suadicani SO, Schaffler MB, Weinbaum S, Spray DC (2013) Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require \(\alpha \)V\(\beta \)3 integrin. Proc Natl Acad Sci 110(52):21012–21017. doi: 10.1073/pnas.1321210110

    Article  Google Scholar 

  53. Tonna EA, Lampen NM (1972) Electron microscopy of aging skeletal cells. I. Centrioles and solitary cilia. J Gerontol 27(3):316–324. doi:10.1093/geronj/27.3.316

  54. Uzbekov RE, Maurel DB, Aveline PC, Pallu S, Benhamou CL, Rochefort GY (2012) Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium. Microsc Microanal 18(6):1430–1441. doi:10.1017/s1431927612013281

    Article  Google Scholar 

  55. Vaughan TJ, Verbruggen SW, McNamara LM (2013) Are all osteocytes equal? Multiscale modelling of cortical bone to characterise the mechanical stimulation of osteocytes. Int J Numer Methods Biomed Eng 29(12):1361–1372. doi:10.1002/cnm.2578

    Article  Google Scholar 

  56. Verbruggen SW, Vaughan TJ, McNamara LM (2012a) Loading-induced interstitial fluid flow in bone mechanobiology: an FSI approach to the osteocyte environment. In: ASME 2012 summer bioengineering conference. American Society of Mechanical Engineers

  57. Verbruggen SW, Vaughan TJ, McNamara LM (2012b) Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J R Soc Interface 9(75):2735–2744. doi:10.1098/rsif.2012.0286

  58. Verbruggen SW, Vaughan TJ, McNamara LM (2013) Fluid flow in the osteocyte mechanical environment: a fluid–structure interaction approach. Biomech Model Mechanobiol 1–13. doi:10.1007/s10237-013-0487-y

  59. Wang Y-K, Chen CS (2013) Cell adhesion and mechanical stimulation in the regulation of mesenchymal stem cell differentiation. J Cell Mol Med 17(7):823–832. doi:10.1111/jcmm.12061

    Article  Google Scholar 

  60. Wang Y, McNamara LM, Schaffler MB, Weinbaum S (2007) A model for the role of integrins in flow induced mechanotransduction in osteocytes. Proc Natl Acad Sci 104(40):15941–15946. doi:10.1073/pnas.0707246104

    Article  Google Scholar 

  61. Westbroek I, Ajubi NE, Alblas MJ, Semeins CM, Klein-Nulend J, Burger EH, Nijweide PJ (2000) Differential stimulation of prostaglandin G/H synthase-2 in osteocytes and other osteogenic cells by pulsating fluid flow. Biochem Biophys Res Commun 268(2):414–419. doi:10.1006/bbrc.2000.2154

    Article  Google Scholar 

  62. White FM (2008) Fluid Mech. McGraw Hill, New York

    Google Scholar 

  63. Wu D, Ganatos P, Spray DC, Weinbaum S (2011) On the electrophysiological response of bone cells using a Stokesian fluid stimulus probe for delivery of quantifiable localized picoNewton level forces. J Biomech 44(9):1702–1708. doi:10.1016/j.jbiomech.2011.03.034

  64. You J, Yellowley CE, Donahue HJ, Zhang Y, Chen Q, Jacobs CR (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 122(4):387–393. doi:10.1115/1.1287161

    Article  Google Scholar 

Download references

Acknowledgments

These authors wish to acknowledge the funding provided by the European Research Council (ERC) under Grant Number 258992 (BONEMECHBIO).

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. M. McNamara.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaughan, T.J., Mullen, C.A., Verbruggen, S.W. et al. Bone cell mechanosensation of fluid flow stimulation: a fluid–structure interaction model characterising the role integrin attachments and primary cilia. Biomech Model Mechanobiol 14, 703–718 (2015). https://doi.org/10.1007/s10237-014-0631-3

Download citation

Keywords

  • Fluid–structure interaction
  • Mechanosensation
  • Osteocyte
  • Primary cilia
  • Integrin attachments