Biomechanics and Modeling in Mechanobiology

, Volume 13, Issue 5, pp 917–928 | Cite as

Mechano-biology in the thoracic aortic aneurysm: a review and case study

  • G. Martufi
  • T. C. Gasser
  • J. J. Appoo
  • E. S. Di Martino
Review Paper

Abstract

An aortic aneurysm is a permanent and localized dilatation of the aorta resulting from an irreversible loss of structural integrity of the aortic wall. The infrarenal segment of the abdominal aorta is the most common site of aneurysms; however, they are also common in the ascending and descending thoracic aorta. Many cases remain undetected because thoracic aortic aneurysms (TAAs) are usually asymptomatic until complications such as aortic dissection or rupture occurs. Clinical estimates of rupture potential and dissection risk, and thus interventional planning for TAAs, are currently based primarily on the maximum diameter and growth rate. The growth rate is calculated from maximum diameter measurements at two subsequent time points; however, this measure cannot reflect the complex changes of vessel wall morphology and local areas of weakening that underline the strong regional heterogeneity of TAA. Due to the high risks associated with both open and endovascular repair, an intervention is only justified if the risk for aortic rupture or dissection exceeds the interventional risks. Consequently, TAAs clinical management remains a challenge, and new methods are needed to better identify patients for elective repair. We reviewed the pathophysiology of TAAs and the role of mechanical stresses and mathematical growth models in TAA management; as a proof of concept, we applied a multiscale biomechanical analysis to a case study of TAA.

Keywords

Thoracic aortic aneurysm Biomechanics Multiscale  Finite element analysis 

References

  1. Acosta S, Ogren M, Bengtsson H, Bergqvist D, Lindblad B, Zdanowski Z (2006) Increasing incidence of ruptured abdominal aortic aneurysm: a population-based study. J Vasc Surg 44:237–43CrossRefGoogle Scholar
  2. Albornoz G, Coady MA, Roberts M, Davies RR, Rizzo J, Elefteriades JA (2006) Familial thoracic aortic aneurysms and dissections—incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg 82(4):1400–1405CrossRefGoogle Scholar
  3. Alford PW, Humphrey JD, Taber LA (2008) Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech Model Mechanobiol 7(4):245–262CrossRefGoogle Scholar
  4. Anidjar S, Salzmann JL, Gentric D, Lagneau P, Camilleri JP, Michel JB (1990) Elastase-induced experimental aneurysms in rats. Circulation 82(3):973–981CrossRefGoogle Scholar
  5. Bäck M, Gasser TC, Michel J-B, Caligiuri G (2013) Spotlight review: biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res. doi:10.1093/cvr/cvt040
  6. Beller CJ, Labrosse MR, Thubrikar MJ, Robicsek F (2004) Role of aortic root motion in the pathogenesis of aortic dissection. Circulation 109(6):763–769CrossRefGoogle Scholar
  7. Bellini C, Di Martino ES, Federico S (2012) Mechanical behaviour of the human atria. Ann Biomed Eng (online)Google Scholar
  8. Bergel DH (1961) The static elastic properties of the arterial wall. J Physiol 156:445–457Google Scholar
  9. Bickerstaff LK, Pairolero PC, Hollier LH, Melton LJ, Van Peenen HJ, Cherry KJ, Joyce JW, Lie JT (1982) Thoracic aortic aneurysms: a population-based study. Surgery 92:1103–1108Google Scholar
  10. Borghi A, Wood NB, Mohiaddin RH, Xu XY (2008) Fluid-solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms: a patient-specific study. J Fluids Struct 24(2):270–280CrossRefGoogle Scholar
  11. Botta D, Elefteriades JA (2006) Matrix metalloproteinases in thoracic aortic aneurysm disease. Int J Angiol 15:1–8CrossRefGoogle Scholar
  12. Braverman A, Thompson R, Sanchez L (2011) Diseases of the aorta. In: Bonow R, Mann D, Zipes D, Libby P (eds) Braunwald’s heart disease, 9th edn. Elsevier, Philadelphia, pp 1309–1337Google Scholar
  13. Carey D (1991) Control of growth and differentiation of vascular cells by extracellular matrix proteins. Ann Rev Physiol 53:161–177CrossRefGoogle Scholar
  14. Clouse WD, Hallett JW Jr, Schaff HV, Gayari MM, Ilstrup DM, Melton J 3rd (1998) Improved prognosis of thoracic aortic aneurysms: a population-based study. JAMA 280(22):1926–1929CrossRefGoogle Scholar
  15. Clouse WD, Hallett JW Jr, Schaff HV, Spittell PC, Rowland CM, Ilstrup DM, Melton LJ 3rd (2004) Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin Proc 79:176–80CrossRefGoogle Scholar
  16. Coady MA, Davies RR, Roberts M, Goldstein LJ, Rogalski MJ, Rizzo JA, Hammond GL, Kopf GS, Elefteriades JA (1999) Familial patterns of thoracic aortic aneurysms. Arch Surg 134:361–367CrossRefGoogle Scholar
  17. Coady MA, Rizzo JA, Hammond GL, Mandapati D, Darr U, Kopf GS, Elefteriades JA (1997) What is the appropriate size criterion for resection of thoracic aortic aneurysm? J Thorac Cardiovasc Surg 113:476–491Google Scholar
  18. Dapunt OE, Galla JD, Sadeghi AM, Lansman SL, Mezrow CK, de Asla RA, Quintana C, Wallenstein S, Ergin AM, Griepp RB (1994) The natural history of thoracic aortic aneurysms. J Thorac Cardiovasc Surg 107:1323–1332Google Scholar
  19. Davies MJ (1998) Aortic aneurysm formation: lessons from human studies and experimental models. Circulation 98:193–195CrossRefGoogle Scholar
  20. Davies RR, Goldstein LJ, Coady MA, Tittle SL, Rizzo JA, Kopf GS, Elefteriades JA (2002) Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg 73:17–28CrossRefGoogle Scholar
  21. de Sa M, Moshkovitz Y, Butany J, David TE (1999) Histologic abnormalities of the ascending aorta and pulmonary trunk in patients with bicuspid aortic valve disease: clinical relevance to the Ross procedure. J Thorac Cardiovasc Surg 118:588–596CrossRefGoogle Scholar
  22. Delfino A, Stergiopulos N, Moore JE Jr, Meister JJ (1997) Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech 30(8):777–786CrossRefGoogle Scholar
  23. Di Martino ES, Bohra A, Vande Geest JP, Gupta NY, Makaroun MS, Vorp DA (2006) Biomechanical properties of ruptured versus non-ruptured Abdominal Aortic Aneurysm wall tissue. J Vasc Surg 43(3):570–576CrossRefGoogle Scholar
  24. Dobrin PB, Baker WH, Gley WC (1984) Elastolytic and collagenolytic studies of arteries. Implications for the mechanical properties of aneurysms. Arch Surg 119:405–409CrossRefGoogle Scholar
  25. Dobrin PB, Mrkvicka R (1994) Failure of elastin and collagen as possible critical connective tissue alterations underlying aneurysmal dilation. Cardiovasc Surg 2:484–488Google Scholar
  26. Elefteriades JA, Barrett PW, Kopf GS (2007) Litigation in non-traumatic diseases? A tempest in the malpractice maelstrom. Cardiology 109:263–72CrossRefGoogle Scholar
  27. Elefteriades JA, Farkas EA (2010) Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol 55:841–857CrossRefGoogle Scholar
  28. Elefteriades JA (2008) Thoracic aortic aneurysm: reading the enemy’s playbook. Yale J Biol Med 81:175–186Google Scholar
  29. Elefteriades JA, Rizzo JA (2008) Epidemiology, prevalence, incidence, trends. In: Elefteriades JA (ed) Acute aortic disease. Informa Healthcare, New York, pp 89–98Google Scholar
  30. Fedak PW, de Sa MP, Verma S, Nili N, Kazemian P, Butany J, Strauss BH, Weisel RD, David TE (2003) Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg 126(3):797–806CrossRefGoogle Scholar
  31. Ferruzzi J, Vorp DA, Humphrey JD (2011) On constitutive descriptors of the biaxial mechanical behaviour of human abdominal aorta and aneurysms. J R Soc Interface 8:435–450CrossRefGoogle Scholar
  32. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE (2003) Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg 37:724–732CrossRefGoogle Scholar
  33. Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol Hearth C 237:H620–H621Google Scholar
  34. Gasbarro MD, Shimada K, Di Martino ES (2007) Mechanics of abdominal aortic aneurysm. Eur J Comput Mech 16:337–363MATHGoogle Scholar
  35. Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J (2010) Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc 40:176–185CrossRefGoogle Scholar
  36. Gasser TC, Gallinetti S, Xing X, Forsell C, Swedenborg J, Roy J (2012) Spatial orientation of collagen fibers in the abdominal aortic aneurysms wall and its relation to wall mechanics. Acta Biomater 8(8):3091–3103CrossRefGoogle Scholar
  37. Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fiber orientations. J Roy Soc Interface 3:15–35CrossRefGoogle Scholar
  38. Gasser TC (2011) An irreversible constitutive model for fibrous soft biological tissue: a 3d microfiber approach with demonstrative application to abdominal aortic aneurysms. Acta Biomater 7(6):2457– 2466CrossRefGoogle Scholar
  39. Griepp RB, Ergin MA, Galla JD, Lansman SL, McCullough JN, Nguyen KN, Klein JJ, David Spielvogel D (1999) Natural history of descending thoracic and thoracoabdominal aneurysms. Ann Thorac Surg 67(6):1927–1930CrossRefGoogle Scholar
  40. Hackman AE, LeMaire SA, Thompson RW (2008) Long term suppressive therapy: clinical reality and future prospects. In: Elefteriades JA (ed) Acute aortic disease. Informa Healthcare, New York, pp 309–330Google Scholar
  41. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61:1–48CrossRefMATHMathSciNetGoogle Scholar
  42. Holzapfel GA, Gasser TC, Stadler M (2002) A structural model for the viscoelastic behavior of arterial walls: continuum formulation and finite element analysis. Eur J Mech A Solids 21(3):441–463CrossRefMATHGoogle Scholar
  43. Humphrey JD (1995) Mechanics of the arterial wall: review and directions. Crit Rev Biomed Eng 23(1–2):1–162Google Scholar
  44. Humphrey JD (2002) Cardiovascular solid mechanics: cells, tissues, and organs. Springer, New YorkCrossRefGoogle Scholar
  45. Humphrey JD, Holzapfel GA (2012) Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms. J Biomech 45:805–814CrossRefGoogle Scholar
  46. Humphrey JD (1999) Remodelling of a collagenous tissue at fixed lengths. J Biomech Eng 121:591–597CrossRefGoogle Scholar
  47. Huntington K, Hunter AG, Chan KL (1997) A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol 30:1809–1812CrossRefGoogle Scholar
  48. Isselbacher EM (2005) Thoracic and abdominal aortic aneurysms. Circulation 111(6):816–28CrossRefGoogle Scholar
  49. Jeremy RW, Huang H, Hwa J, McCarron H, Hughes CF, Richards JG (1994) Relation between age, arterial distensibility, and aortic dilatation in the Marfan syndrome. Am J Cardiol 74:369–373CrossRefGoogle Scholar
  50. Johansson G, Markström U, Swedenborg J (1995) Ruptured thoracic aortic aneurysms: a study of incidence and mortality rates. J Vasc Surg 21:985–988CrossRefGoogle Scholar
  51. Khanafer K, Berguer R (2009) Fluid-structure interaction analysis of turbulent pulsatile flow within a layered aortic wall as related to aortic dissection. J Biomech 42(16):2642–2648CrossRefGoogle Scholar
  52. Koullias GJ, Korkolis DP, Ravichandran P, Psyrri A, Hatzaras I, Elefteriades JA (2004a) Tissue microarray detection of matrix metalloproteinases, in diseased tricuspid and bicuspid aortic valves with or without pathology of the ascending aorta. Eur J Cardiothor Surg 26(6):1098–1103CrossRefGoogle Scholar
  53. Koullias GJ, Ravichandran P, Korkolis DP, Rimm DL, Elefteriades JA (2004b) Increased tissue microarray MMP expression favors proteolysis in thoracic aortic aneurysms and dissections. Ann Thorac Surg 78(6):2106–2110CrossRefGoogle Scholar
  54. Langewouters GJ, Wesseling KH, Goedhard WJA (1984) The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 17:425– 435Google Scholar
  55. Lanir Y (1983) Constitutive equations for fibrous connective tissues. J Biomech 16(1):1–12CrossRefGoogle Scholar
  56. Larsson E, Vishnevskaya L, Kalin B, Granath F, Swedenborg J, Hultgren R (2011) High frequency of thoracic aneurysms in patients with abdominal aortic aneurysms. Ann Surg 253(1):180–184CrossRefGoogle Scholar
  57. Lehoux S, Tedgui A (1998) Signal transduction of mechanical stresses in the vascular wall. Hypertension 32(2):338–345CrossRefGoogle Scholar
  58. Leung DY, Ng AC (2010) Emerging clinical role of strain imaging in echocardiography. Heart Lung Circ 19(3):161–174CrossRefGoogle Scholar
  59. Lobato AC, Puech-Leao P (1998) Predictive factors for rupture of thoracoabdominal aortic aneurysm. J Vasc Surg 27:446–453CrossRefGoogle Scholar
  60. Lopez-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW (1997) Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol 150:993–1007Google Scholar
  61. Mak S, Van Spall HG, Wainstein RV, Sasson Z (2012) Strain, strain rate and the force frequency relationship in patients with and without heart failure. J Am Soc Echocardiogr 25(3):341–348CrossRefGoogle Scholar
  62. Mao SS, Ahmadi N, Shah B, Beckmann D, Chen A, Ngo L, Flores FR, Gao YL, Budoff MJ (2008) Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults: impact of age and gender. Acad Radiol 15(7):827–34CrossRefGoogle Scholar
  63. Martufi G, Auer M, Roy J, Swedenborg J, Sakalihasan N, Panuccio G, Gasser TC (2013) Multidimensional growth measurements of abdominal aortic aneurysms. J Vasc Surg 58(3):748–755CrossRefGoogle Scholar
  64. Martufi G, Gasser TC (2011) A constitutive model for vascular tissue that integrates fibril, fiber and continuum levels with application to the isotropic and passive properties of the infrarenal aorta. J Biomech 44:2544–2550CrossRefGoogle Scholar
  65. Martufi G, Gasser TC (2012a) Histo-mechanical modeling of the wall of abdominal aorta aneurysms. In: Preprints MATHMOD 2012 Vienna—full paper volume, Inge Troch, Felix Breitenecker. ARGESIM Report No. S38Google Scholar
  66. Martufi G, Gasser TC (2012b) Turnover of fibrillar collagen in soft biological tissue with application to the expansion of abdominal aortic aneurysms. J R Soc Interface 9(77):3366–3377CrossRefGoogle Scholar
  67. Martufi G, Gasser TC (2013) Review: the role of biomechanical modeling in the rupture risk assessment for abdominal aortic aneurysms. J Biomech Eng 135(2):021010CrossRefGoogle Scholar
  68. Nathan DP, Xu C, Gorman JH III, Fairman RM, Bavaria JE, Gorman RC, Chandran KB, Jackson BM (2011) Pathogenesis of acute aortic dissection: a finite element stress analysis. Ann Thorac Surg 91(2):458–463CrossRefGoogle Scholar
  69. Nchimi A, Cheramy-Bien JP, Gasser TC, Namur G, Gomez P, Seidel L, Albert A, Defraigne JO, Labropoulos N, Sakalihasan N (2013) Multifactorial relationship between 18f-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ Cardiovasc Imaging (on line)Google Scholar
  70. Nissen R, Cardinale GJ, Udenfriend S (1978) Increased turnover of arterial collagen in hypertensive rats. Proc Natl Acad Sci USA 75:451–453CrossRefGoogle Scholar
  71. Nistri S, Sorbo MD, Marin M, Palisi M, Scognamiglio R, Thiene G (1999) Aortic root dilatation in young men with normally functioning bicuspid aortic valves. Heart 82:19–22Google Scholar
  72. Nkomo VT, Enriquez-Sarano M, Ammash NM, Melton LJ 3rd, Bailey KR, Desjardins V, Horn RA, Tajik AJ (2003) Bicuspid aortic valve associated with aortic dilatation; a community-based study. Arterioscler Thromb Vasc Biol 23:351–356Google Scholar
  73. Okamoto RJ, Wagenseil JE, DeLong WR, Peterson SJ, Kouchoukos NT, Sundt TM III (2002) Mechanical properties of dilated human ascending aorta. Ann Biomed Eng 30:624–635CrossRefGoogle Scholar
  74. Olsson C, Thelin S, Ståhle E, Ekbom A, Granath F (2006) Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14 000 cases from 1987 to 2002. Circulation 114:2611–2618CrossRefGoogle Scholar
  75. Pachulski RT, Weinberg AL, Chan KL (1991) Aortic aneurysm in patients with functionally normal or minimally stenotic bicuspid aortic valve. Am J Cardiol 67(8):781–782CrossRefGoogle Scholar
  76. Pape LA, Tsai TT, Isselbacher EM, Oh JK, O’Gara PT, Evangelista A, Fattori R, Meinhardt G, Trimarchi S, Bossone E, Suzuki T, Cooper JV, Froehlich JB, Nienaber CA, Eagle KA (2007) Aortic diameter >or=5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation 116:1120–1127CrossRefGoogle Scholar
  77. Polzer S, Bursa J, Gasser TC, Staffa R, Vlachovsky R (2013) A numerical implementation to predict residual strains from the homogeneous stress hypothesis with application to abdominal aortic aneurysms. Ann Biomed Eng 41(7):1516–1527CrossRefGoogle Scholar
  78. Raghavan ML, Vorp DA (2000) Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 33:475–482CrossRefGoogle Scholar
  79. Raghavan ML, Webster MW, Vorp DA (1996) Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng 24:573–582CrossRefGoogle Scholar
  80. Roach MR, Burton AC (1957) The reason for the shape of the distensibility curves of arteries. Can J Physiol Pharmacol 35:681–690Google Scholar
  81. Rodriguez JF, Martufi G, Doblare’ M, Finol EA (2009) The effect of material model formulation in the stress analysis of abdominal aortic aneurysms. Ann Biomed Eng 37(11):2218–2221CrossRefGoogle Scholar
  82. Rodriguez JF, Ruiz C, Doblare’ M, Holzapfel GA (2008) Mechanical stresses in abdominal aortic aneurysms: influence of diameter, asymmetry, and material anisotropy. J Biomech Eng 130:021023CrossRefGoogle Scholar
  83. Sakalihasan N, Kuivaniemi H, Nusgens B, Durieux R, Defraigne JO (2011) Aneurysm: epidemiology aetiology and pathophysiology. In: McGloughlin T (ed) Biomechanics and mechanobiology of aneurysms (Studies in Mechanobiology, Tissue Engineering and Biomaterials), vol 7. Springer, Berlin, pp 1–33Google Scholar
  84. Schmid FX, Bielenberg K, Schneider A, Haussler A, Keyser A, Birnbaum D (2003) Ascending aortic aneurysm associated with bicuspid and tricuspid aortic valve: involvement and clinical relevance of smooth muscle cell apoptosis and expression of cell death-initiating proteins. Eur J Cardiothoracic Surg 23:537–543CrossRefGoogle Scholar
  85. Shang EK, Nathan DP, Sprinkle SR, Vigmostad SC, Fairman RM, Bavaria JE, Gorman RC, Gorman JH III, Chandran KB, Jackson BM (2013) Peak wall stress predicts expansion rate in descending thoracic aortic aneurysms. Ann Thorac Surg 95:593–8CrossRefGoogle Scholar
  86. Shih J-Y, Tsai W-C, Huang Y-Y, Liu Y-W, Lin C-C, Huang Y-S, Tsai L-M, Lin L-J (2011) Assocation of decreased left atrial strain and strain rate with stroke in chronic atrial fibrillation. J Am Soc Echocardiogr 24(5):513–519CrossRefGoogle Scholar
  87. Simo JC, Taylor RL (1991) Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Comput Methods Appl Mech Eng 85:273–310CrossRefMATHMathSciNetGoogle Scholar
  88. Sinha I, Bethi S, Cronin P, Williams DM, Roelofs K, Ailawadi G, Henke PK, Eagleton MJ, Deeb GM, Patel HJ, Berguer R, Stanley JC, Upchurch GR Jr (2006) A biologic basis for asymmetric growth in descending thoracic aortic aneurysms: a role for matrix metalloproteinase 9 and 2. J Vasc Surg 43(2):342–348CrossRefGoogle Scholar
  89. Sokolis DP, Kritharis EP, Giagini AT, Lampropoulos KM, Papadodima SA, Iliopoulos DC (2012) Biomechanical response of ascending thoracic aortic aneurysms: association with structural remodeling. Comput Method Biomech 15(3):231–248 Google Scholar
  90. Takamizawa K, Hayashi K (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20(1):7–17CrossRefGoogle Scholar
  91. Tang PCY, Coady MA, Lovoulos C, Dardik A, Aslan M, Elefteriades JA, Tellides G (2005) Hyperplastic cellular remodeling of the media in ascending thoracic aortic aneurysms. Circulation 112:1098–1105CrossRefGoogle Scholar
  92. Thubrikar MJ, Agali P, Robicsek F (1999) Wall stress as a possible mechanism for the development of transverse intimal tears in aortic dissections. J Med Eng Technol 23(4):127–134CrossRefGoogle Scholar
  93. Tse KM, Chiu P, Lee HP, Ho P (2011) Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 44(5):827–836CrossRefGoogle Scholar
  94. Vaishnav RN, Young JT, Janicki JS, Patel JS (1972) Nonlinear anisotropic elastic properties of the canine aorta. Biophys J 12(8):1008–1027CrossRefGoogle Scholar
  95. Vande Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA (2006) A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann NY Acad Sci 1085:11–21CrossRefGoogle Scholar
  96. Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G, Chetter IC, McCollum PT (2004) A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Surg 28:168–176Google Scholar
  97. Vorp DA, Schiro BJ, Ehrlich MP, Juvonen TS, Ergin MA, Griffith BP (2003) Effect of aneurysm on the tensile strength and biomechanical behaviour of the ascending thoracic aorta. Ann Thorac Surg 75:1210–1214CrossRefGoogle Scholar
  98. Wess TJ (2008) Collagen fibrillar structure and hierarchies. In: Fratzl P (ed) Collagen structure and mechanics. Springer, New York, pp 49–80Google Scholar
  99. Wuyts FL, Vanhuyse VJ, Langewouters GJ, Decraemer WF, Raman ER, Buyle S (1995) Elastic properties of human aortas in relation to age and atherosclerosis: a structural model. Phys Med Biol 40:1577–1597CrossRefGoogle Scholar
  100. Xu C, Lee S, Singh TM, Sho E, Li X, Sho M, Masuda H, Zarins CK (2001) Molecular mechanisms of aortic wall remodeling in response to hypertension. J Vasc Surg 33(3):570–578CrossRefGoogle Scholar
  101. Xu XY, Borghi A, Nchimi A, Leung J, Gomez P, Cheng Z, Defraigne JO, Sakalihasan N (2010) High levels of 18f-fdg uptake in aortic aneurysm as wall are associated with high wall stress. Eur J Vasc Endovasc 39:295–301CrossRefGoogle Scholar
  102. Yasuda H, Nakatani S, Stugaard M, Tsujita-Kuroda Y, Bando K, Kobayashi J, Yamagishi M, Kitakaze M, Kitamura S, Miyatake K (2003) Failure to prevent progressive dilation of ascending aorta by aortic valve replacement in patients with bicuspid aortic valve: comparison with tricuspid aortic valve. Circulation 108(Suppl 1):II291–II294Google Scholar
  103. Zulliger MA, Fridez P, Hayashi K, Stergiopulos N (2004) A strain energy function for arteries accounting for wall composition and structure. J Biomech 37(7):989–1000CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • G. Martufi
    • 1
  • T. C. Gasser
    • 2
  • J. J. Appoo
    • 3
  • E. S. Di Martino
    • 1
  1. 1.Department of Civil Engineering and Centre for Bioengineering Research and Education, Schulich School of EngineeringUniversity of CalgaryCalgaryCanada
  2. 2.Department of Solid Mechanics, School of Engineering SciencesRoyal Institute of Technology, KTHStockholmSweden
  3. 3.Department of Cardiac Sciences/Surgery, School of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations