Skip to main content
Log in

Measuring, reversing, and modeling the mechanical changes due to the absence of Fibulin-4 in mouse arteries

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mice with a smooth muscle cell (SMC)-specific deletion of Fibulin-4 (SMKO) show decreased expression of SMC contractile genes, decreased circumferential compliance, and develop aneurysms in the ascending aorta. Neonatal administration of drugs that inhibit the angiotensin II pathway encourages the expression of contractile genes and prevents aneurysm development, but does not increase compliance in SMKO aorta. We hypothesized that multidimensional mechanical changes in the aorta and/or other elastic arteries may contribute to aneurysm pathophysiology. We found that the SMKO ascending aorta and carotid artery showed mechanical changes in the axial direction. These changes were not reversed by angiotensin II inhibitors, hence reversing the axial changes is not required for aneurysm prevention. Mechanical changes in the circumferential direction were specific to the ascending aorta; therefore, mechanical changes in the carotid do not contribute to aortic aneurysm development. We also hypothesized that a published model of postnatal aortic growth and remodeling could be used to investigate mechanisms behind the changes in SMKO aorta and aneurysm development over time. Dimensions and mechanical behavior of adult SMKO aorta were reproduced by the model after modifying the initial component material constants and the aortic dilation with each postnatal time step. The model links biological observations to specific mechanical responses in aneurysm development and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agianniotis A, Rachev A, Stergiopulos N (2012) Active axial stress in mouse aorta. J Biomech 45(11):1924–1927. doi:10.1016/j.jbiomech.2012.05.025

    Article  Google Scholar 

  • Alford PW, Humphrey JD, Taber LA (2008) Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents. Biomech Model Mechanobiol 7(4):245–262. doi:10.1007/s10237-007-0101-2

    Article  Google Scholar 

  • Bunton TE, Biery NJ, Myers L, Gayraud B, Ramirez F, Dietz HC (2001) Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res 88(1):37–43

    Article  Google Scholar 

  • Carta L, Wagenseil JE, Knutsen RH, Mariko B, Faury G, Davis EC, Starcher B, Mecham RP, Ramirez F (2009) Discrete contributions of elastic fiber components to arterial development and mechanical compliance. Arterioscler Thromb Vasc Biol 29(12):2083–2089. doi:10.1161/ATVBAHA.109.193227

    Article  Google Scholar 

  • Cecelja M, Chowienczyk P (2009) Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension 54(6):1328–1336. doi:10.1161/HYPERTENSIONAHA.109.137653

    Article  Google Scholar 

  • Chesnutt JK, Han HC (2011) Tortuosity triggers platelet activation and thrombus formation in microvessels. J Biomech Eng 133(12):121004. doi:10.1115/1.4005478

    Article  Google Scholar 

  • Dasouki M, Markova D, Garola R, Sasaki T, Charbonneau N, Sakai L, Chu M (2007) Compound heterozygous mutations in fibulin-4 causing neonatal lethal pulmonary artery occlusion, aortic aneurysm, arachnodactyly, and mild cutis laxa. Am J Med Genet A 143(22):2635–2641. doi:10.1002/ajmg.a.31980

    Article  Google Scholar 

  • Dye WW, Gleason RL, Wilson E, Humphrey JD (2007) Altered biomechanical properties of carotid arteries in two mouse models of muscular dystrophy. J Appl Physiol 103(2):664–672

    Article  Google Scholar 

  • Eberth JF, Gresham VC, Reddy AK, Popovic N, Wilson E, Humphrey JD (2009a) Importance of pulsatility in hypertensive carotid artery growth and remodeling. J Hypertens 27(10):2010–2021. doi:10.1097/HJH.0b013e32832e8dc8

    Article  Google Scholar 

  • Eberth JF, Taucer AI, Wilson E, Humphrey JD (2009b) Mechanics of carotid arteries in a mouse model of Marfan Syndrome. Ann Biomed Eng 37(6):1093–1104. doi:10.1007/s10439-009-9686-1

    Article  Google Scholar 

  • Faury G, Maher GM, Li DY, Keating MT, Mecham RP, Boyle WA (1999) Relation between outer and luminal diameter in cannulated arteries. Am J Physiol 277(5 Pt 2):H1745–1753

    Google Scholar 

  • Gleason RL, Humphrey JD (2004) A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover. J Vasc Res 41(4):352–363

    Article  Google Scholar 

  • Gleason RL, Taber LA, Humphrey JD (2004) A 2-D Model of flow-induced alterations in the geometry, structure and properties of carotid arteries. J Biomech Eng 126:371–381

    Article  Google Scholar 

  • Gosgnach W, Challah M, Coulet F, Michel JB, Battle T (2000) Shear stress induces angiotensin converting enzyme expression in cultured smooth muscle cells: possible involvement of bFGF. Cardiovasc Res 45(2):486–492

    Article  Google Scholar 

  • Huang J, Davis EC, Chapman SL, Budatha M, Marmorstein LY, Word RA, Yanagisawa H (2010) Fibulin-4 deficiency results in ascending aortic aneurysms: a potential link between abnormal smooth muscle cell phenotype and aneurysm progression. Circ Res 106(3):583–592. doi:10.1161/CIRCRESAHA.109.207852

    Article  Google Scholar 

  • Huang J, Yamashiro Y, Papke CL, Ikeda Y, Lin Y, Patel M, Inagami T, Le VP, Wagenseil JE, Yanagisawa H (2013) Angiotensin-converting enzyme-induced activation of local Angiotensin signaling is required for ascending aortic aneurysms in fibulin-4-deficient mice. Science Transl Med 5(183):183ra158. doi:10.1126/scitranslmed.3005025

  • Jackson ZS, Dajnowiec D, Gotlieb AI, Langille BL (2005) Partial off-loading of longitudinal tension induces arterial tortuosity. Arterioscler Thromb Vasc Biol 25(5):957–962

    Article  Google Scholar 

  • Le VP, Knutsen RH, Mecham RP, Wagenseil JE (2011) Decreased aortic diameter and compliance precedes blood pressure increases in postnatal development of elastin-insufficient mice. Am J Physiol Heart Circ Physiol 301(1):H221–229. doi:10.1152/ajpheart.00119.2011

    Article  Google Scholar 

  • Majesky MW (2007) Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol 27(6):1248–1258. doi:10.1161/ATVBAHA.107.141069

    Article  Google Scholar 

  • McLaughlin PJ, Chen Q, Horiguchi M, Starcher BC, Stanton JB, Broekelmann TJ, Marmorstein AD, McKay B, Mecham R, Nakamura T, Marmorstein LY (2006) Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Mol Cell Biol 26(5):1700–1709

    Article  Google Scholar 

  • Nguyen Dinh Cat A, Touyz RM (2011) Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep 13(2):122–128. doi:10.1007/s11906-011-0187-x

    Article  Google Scholar 

  • Reneman RS, Hoeks AP (2008) Wall shear stress as measured in vivo: consequences for the design of the arterial system. Med Biol Eng Comput 46(5):499–507. doi:10.1007/s11517-008-0330-2

    Article  Google Scholar 

  • Taber LA, Eggers DW (1996) Theoretical study of stress-modulated growth in the aorta. J Theor Biol 180:343–357

    Article  Google Scholar 

  • Umeda H, Nakamura F, Suyama K (2001) Oxodesmosine and isooxodesmosine, candidates of oxidative metabolic intermediates of pyridinium cross-links in elastin. Arch Biochem Biophys 385(1):209–219. doi:10.1006/abbi.2000.2145

    Article  Google Scholar 

  • Van Doormaal MA, Kazakidi A, Wylezinska M, Hunt A, Tremoleda JL, Protti A, Bohraus Y, Gsell W, Weinberg PD, Ethier CR (2012) Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root. J R Soc Interf 9(76):2834–2844. doi:10.1098/rsif.2012.0295

    Article  Google Scholar 

  • Wagenseil JE (2011) A constrained mixture model for developing mouse aorta. Biomech Model Mechanobiol 10(5):671–687. doi:10.1007/s10237-010-0265-z

    Article  Google Scholar 

  • Wagenseil JE, Nerurkar NL, Knutsen RH, Okamoto RJ, Li DY, Mecham RP (2005) Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries. Am J Physiol Heart Circ Physiol 289(3):H1209–1217. doi:10.1152/ajpheart.00046.2005

    Article  Google Scholar 

  • Wan W, Yanagisawa H, Gleason RL Jr (2010) Biomechanical and microstructural properties of common carotid arteries from fibulin-5 null mice. Ann Biomed Eng 38(12):3605–3617. doi:10.1007/s10439-010-0114-3

    Article  Google Scholar 

  • Xiong W, Meisinger T, Knispel R, Worth JM, Baxter BT (2012) MMP-2 regulates Erk1/2 phosphorylation and aortic dilatation in Marfan syndrome. Circ Res 110(12):e92–e101. doi:10.1161/CIRCRESAHA.112.268268

    Article  Google Scholar 

  • Yang HH, Kim JM, Chum E, van Breemen C, Chung AW (2010) Effectiveness of combination of losartan potassium and doxycycline versus single-drug treatments in the secondary prevention of thoracic aortic aneurysm in Marfan syndrome. J Thorac Cardiovasc Surg 140(2):305–312. doi:10.1016/j.jtcvs.2009.10.039

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01HL115560 (JEW), R01HL105314 (JEW), R01HL106305 (HY), grants from the American Heart Association (Grant-In-Aid, 0855200F, HY), and The National Marfan Foundation (HY426g). HY is a recipient of the Established Investigator Award from the American Heart Association. We thank Jianbin Huang for his assistance in the drug treatment experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica E. Wagenseil.

Appendix

Appendix

The aorta is considered a constrained mixture of wall components \((k)\) where the total mean Cauchy stress \((\sigma )\) in the circumferential \((\theta )\) and axial \((z)\) direction is the sum of the stresses in each component \((\sigma _{\theta }^{k}, \sigma _{z}^{k})\) multiplied by the mass fraction \((\phi ^{k})\) of each component at time, \(s\):

$$\begin{aligned}&\sigma _\theta (\lambda _\theta , \lambda _z)=\sum _k{\phi ^{k}(s)\sigma _\theta ^k (\lambda _\theta ^k, \lambda _z^k)},\end{aligned}$$
(6a)
$$\begin{aligned}&\sigma _z (\lambda _\theta , \lambda _z)=\sum _k {\phi ^{k}(s)\sigma _z^k (\lambda _\theta ^k, \lambda _z^k)}, \end{aligned}$$
(6b)

where \(\lambda _{\theta }, \lambda _{z}\) are the stretch ratios of the mixture and \(\lambda ^{k}_{\theta }, \lambda ^{k}_{z}\) are the stretch ratios of each component. The components have individual homeostatic stretch ratios \((\lambda ^{k}_{\theta h}, \lambda ^{k}_{zh})\) at which they are produced and these values increase 3 % in the circumferential direction and decrease 3 % in the axial direction with each developmental time step (Wagenseil 2011). The unloaded stretch ratios of the mixture when the components are produced are \(\lambda _{\theta u}, \lambda _{zu}\). The different stretch ratios are related by

$$\begin{aligned} \lambda _\theta ^k&= \frac{\lambda _\theta \lambda _{\theta h}^k}{\lambda _{\theta u}},\end{aligned}$$
(7a)
$$\begin{aligned} \lambda _z^k&= \frac{\lambda _z\lambda _{zh}^k}{\lambda _{zu}}. \end{aligned}$$
(7b)

The component stresses are defined by constitutive equations for elastin (e), collagen (c), and SMCs (m). SMCs have both passive (pas) and active (act) stress contributions (Gleason and Humphrey 2004; Gleason et al. 2004):

Elastin:

$$\begin{aligned} \sigma _\theta ^e (\lambda _\theta ^e, \lambda _z^e)&= 2\lambda _\theta ^e b_1 \left( {1-\frac{1}{\lambda _\theta ^{e^{4}} \lambda _z^{e^{2}} }}\right) ,\end{aligned}$$
(8a)
$$\begin{aligned} \sigma _z^e (\lambda _\theta ^e, \lambda _z^e)&= 2\lambda _z^e b_1\left( {1-\frac{1}{\lambda _\theta ^{e^{2}} \lambda _z^{e^{4}} }}\right) , \end{aligned}$$
(8b)

Collagen:

$$\begin{aligned} \sigma _\theta ^c (\lambda _\theta ^c, \lambda _z^c)&= 2\lambda _\theta ^c b_2 b_3\left( {1-\frac{1}{\lambda _\theta ^{c^{4}} \lambda _z^{c^{2}}}}\right) \exp (Q^{c}(\lambda _\theta ^c ,\lambda _z^c)),\end{aligned}$$
(9)
$$\begin{aligned} \sigma _z^c (\lambda _\theta ^c, \lambda _z^c)&= 2\lambda _\theta ^c b_2 \left[ b_3 \left( {1-\frac{1}{\lambda _\theta ^{c^{2}} \lambda _z^{c^{4}} }}\right) +2b_4 \left( {\lambda _z^{c^{2}} -1}\right) \right] \nonumber \\&\times \exp (Q^{c}(\lambda _\theta ^c, \lambda _z^c)), \end{aligned}$$
(10)

with

$$\begin{aligned} Q^{c}(\lambda _\theta ^c ,\lambda _z^c)&= b_3 \left( {\lambda _\theta ^{c^{2}} +\lambda _z^{c^{2}} +\frac{1}{\lambda _\theta ^{c^{2}} \lambda _z^{c^{2}} }-3}\right) \nonumber \\&+\,\,b_4\left( {\lambda _z^{c^{2}} -1}\right) ^{2}, \end{aligned}$$
(11)

SMCs:

$$\begin{aligned} \sigma _{\theta }^{m}&= \sigma _{\theta ,pas}^{m}+ \sigma _{\theta , act}^{m},\end{aligned}$$
(12a)
$$\begin{aligned} \sigma _{z}^{m}&= \sigma _{z,pas}^{m}, \end{aligned}$$
(12b)

Passive SMCs:

$$\begin{aligned}&\sigma _{\theta ,pas}^m (\lambda _\theta ^m, \lambda _z^m)\nonumber \\&\quad =2\lambda _\theta ^{m^{2}} \left[ {b_5 \left( {1-\frac{1}{\lambda _\theta ^{m^{4}} \lambda _z^{m^{2}}}}\right) +2b_6 b_7 \left( {\lambda _\theta ^{m^{2}}-1}\right) }\right] \nonumber \\&\qquad \times \exp (Q^{m}(\lambda _\theta ^m)), \end{aligned}$$
(13)

with

$$\begin{aligned}&Q^{m}(\lambda _\theta ^m)=b_7 \left( {\lambda _\theta ^{m^{2}}-1}\right) ^{2},\end{aligned}$$
(14)
$$\begin{aligned}&\sigma _{z,pas}^m (\lambda _\theta ^m, \lambda _z^m)=2\lambda _z^{m^{2}} b_5 \left( {1-\frac{1}{\lambda _\theta ^{m^{2}} \lambda _z^{m^{4}}}}\right) , \end{aligned}$$
(15)

Active SMCs:

$$\begin{aligned} \sigma _{\theta , act}^m (\lambda _\theta ^m)=T_{act} \hat{f}(\lambda _\theta ^m), \end{aligned}$$

with

$$\begin{aligned} \hat{{f}}(\lambda _\theta ^m)\!=\!\lambda _\theta ^m \left[ {1-\left( {\frac{\lambda _M -\lambda _\theta ^m }{\lambda _M -\lambda _0}}\right) ^{2}}\right] , T_{act} \!=\! T_{B} \!-\! T_{Q}, \end{aligned}$$
(16)

where \(b_{1 - 7}\) are passive material constants that increase 8 % with each developmental time step (Wagenseil 2011). \(\lambda _{M}, \lambda _{0}\) are active SMC material constants, \(T_{B}=\,\)basal SMC tone constant and \(T_{Q}=\,\)SMC activation caused by changes in flow. \(T_{Q}\) can be calculated according to (Gleason et al. 2004):

$$\begin{aligned} T_Q&= \frac{1}{\phi ^{m}\hat{f}(\varepsilon _Q^{1/3}\lambda _\theta ^m (0))}(\sigma _{\theta ,pas}^m (s_v )-\sigma _{\theta , \hbox {pas}}^m (0)d)\nonumber \\&\quad +\,\,T_B \left( {1-\frac{\hat{{f}}(\lambda _\theta ^m (0)d)}{\hat{{f}}(\varepsilon _Q^{1/3}\lambda _\theta ^m (0))}}\right) , \end{aligned}$$
(17)

where the SMC stretch ratios and stresses are functions of the time elapsed since each step change in pressure, length, and flow. At time \(=\) 0, the aorta is at its homeostatic state before the step change occurs and at time \(=\,s_{v}\), the instantaneous dilation response occurs. Additionally, \(d=\varepsilon _Q^{1/3}h_o /h(s_v)\), where \(h_{o}=\,\)initial wall thickness at time \(=\) 0.

The components are continually produced with each developmental time step. SMCs and collagen are also continually degraded, but elastin is not because of its long half-life. Kinetic functions for the production \((g)\) and the degradation \((q)\) of each component are (Gleason and Humphrey 2004; Gleason et al. 2004):

$$\begin{aligned} g^{k}(s)&= 1-\exp [-K_{g}^{k}s/s_{h}],\end{aligned}$$
(18a)
$$\begin{aligned} q^{k}(s)&= \exp [-K_{q}^{k}s/s_{h}], \end{aligned}$$
(18b)

where \(K^{k}_{g}\) and \(K^{k}_{q}\) are the associated rate constants for each component and \(s_{h}\) is the homeostatic time at which remodeling is complete. A rate constant of 6.9 allows almost complete turnover with about 0.1 % of the original component remaining. Total mass fractions (original \(+\) new components) at each time step are determined from previously published experimental data (Wagenseil 2011).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le, V.P., Yamashiro, Y., Yanagisawa, H. et al. Measuring, reversing, and modeling the mechanical changes due to the absence of Fibulin-4 in mouse arteries. Biomech Model Mechanobiol 13, 1081–1095 (2014). https://doi.org/10.1007/s10237-014-0556-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0556-x

Keywords

Navigation