## Abstract

Blebs are cellular protrusions that are used by cells for multiple purposes including locomotion. A mechanical model for the problem of pressure-driven blebs based on force and moment balances of an axisymmetric shell model is proposed. The formation of a bleb is initiated by weakening the shell over a small region, and the deformation of the cellular membrane from the cortex is obtained during inflation. However, simply weakening the shell leads to an area increase of more than 4 %, which is physically unrealistic. Thus, the model is extended to include a reconfiguration process that allows large blebs to form with small increases in area. It is observed that both geometric and biomechanical constraints are important in this process. In particular, it is shown that although blebs are driven by a pressure difference across the cellular membrane, it is not the limiting factor in determining bleb size.

This is a preview of subscription content, log in to check access.

## References

Ashby MF, Gibson LJ, Wegst U, Olive R (1995) The mechanical properties of natural materials. I. Material property charts. Proc R Soc A 450(1938):123–140

Blaser H, Reichman-Fried M, Castanon I, Dumstrei K, Marlow FL, Kawakami K, Solnica-Krezel L, Heisenberg CP, Raz E (2006) Migration of zebrafish primordial germ cells: a role for myosin contraction and cytoplasmic flow. Dev Cell 11(5):613–627

Boucrot E, Kirchhausen T (2007) Endosomal recycling controls plasma membrane area during mitosis. Proc Natl Acad Sci 104(19):7939

Charras GT (2008) A short history of blebbing. J Microsc 231(3):466–478

Charras G, Paluch E (2008) Blebs lead the way: how to migrate without lamellipodia. Nat Rev Mol Cell Biol 9(9):730–736

Charras GT, Yarrow JC, Horton MA, Mahadevan L, Mitchison TJ (2005) Non-equilibration of hydrostatic pressure in blebbing cells. Nature 435(7040):365–369

Charras GT, Coughlin M, Mitchison TJ, Mahadevan L (2008) Life and times of a cellular bleb. Biophys J 94(5):1836–1853

Collins-Hooper H, Woolley TE, Dyson L, Patel A, Potter P, Baker RE, Gaffney EA, Maini PK, Dash PR, Patel K (2012) Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration. Stem Cells 30(6):1182–1195

Cunningham CC (1995) Actin polymerization and intracellular solvent flow in cell surface blebbing. J Cell Biol 129(6):1589–1599

Dai J, Sheetz MP (1999) Membrane tether formation from blebbing cells. Biophys J 77(6):3363–3370

Evans EA (1983) Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys J 43(1):27–30

Evans EA, Skalak R (1980) Mechanics and thermodynamics of biomembranes. CRC Press, Boca Raton, FL

Fackler OT, Grosse R (2008) Cell motility through plasma membrane blebbing. J Cell Biol 181(6):879

Goriely A, Tabor M (2003a) Biomechanical models of hyphal growth in actinomycetes. J Theor Biol 222(2):211–218

Goriely A, Tabor M (2003b) Self-similar tip growth in filamentary organisms. Phys Rev Lett 90(10):108101

Goriely A, Tabor M (2006) Estimates of biomechanical forces in

*Magnaporthe grisea*. Mycol Res 110(Pt 7):755–759Goriely A, Károlyi G, Tabor M (2005) Growth induced curve dynamics for filamentary micro-organisms. J Math Biol 51(3):355–366

Hallett MB, Dewitt S (2007) Ironing out the wrinkles of neutrophil phagocytosis. Trends Cell Biol 17(5):209–214

Hallett MB, von Ruhland CJ, Dewitt S (2008) Chemotaxis and the cell surface-area problem. Nat Rev Mol Cell Biol 9(8):662–662

Hickson GRX, Echard A, O’Farrell PH (2006) Rho-kinase controls cell shape changes during cytokinesis. Curr Biol 16(4):359–370

Hu J (2009) Mathematical modeling and analysis of in vitro Actin filament dynamics and cell blebbing. PhD thesis, University of Minnesota

Keller H, Eggli P (1998) Protrusive activity, cytoplasmic compartmentalization, and restriction rings in locomoting blebbing Walker carcinosarcoma cells are related to detachment of cortical actin from the plasma membrane. Cell Motil Cytoskelet 41(2):181–193

Keller HU, Bebie H (1996) Protrusive activity quantitatively determines the rate and direction of cell locomotion. Cell Motil Cytoskelet 33(4):241–251

Lew DJ (2003) The morphogenesis checkpoint: how yeast cells watch their figures. Curr Opin Cell Biol 15(6):648–653

Lim FY, Chiam KH, Mahadevan L (2012) The size, shape, and dynamics of cellular blebs. Bull Am Phys Soc 55:1–6

Maugis B, Brugués J, Nassoy P, Guillen N, Sens P, Amblard F (2010) Dynamic instability of the intracellular pressure drives bleb-based motility. J Cell Sci 123(22):3884–3892

Mills JC, Stone NL, Erhardt J, Pittman RN (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation. J Cell Biol 140(3):627–636

Nichol JA, Hutter OF (1996) Tensile strength and dilatational elasticity of giant sarcolemmal vesicles shed from rabbit muscle. J Phys 493:187

Norman LL, Brugs J, Sengupta K, Sens P, Aranda-Espinoza H (2010) Cell blebbing and membrane area homeostasis in spreading and retracting cells. Biophys J 99(6):1726–1733

Otto A, Collins-Hooper H, Patel A, Dash PR, Patel K (2011) Adult skeletal muscle stem cell migration is mediated by a blebbing/amoeboid mechanism. Rejuv Res 14(3):249–260

Paluch E, Sykes C, Prost J, Bornens M (2006) Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends Cell Biol 16(1):5–10

Pozrikidis C (2001) Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J Fluid Mech 440:269–291

Pressley A (2010) Elementary differential geometry. Springer, New York

Robertson AMG, Bird CC, Waddell AW, Currie AR (1978) Morphological aspects of glucocorticoid-induced cell death in human lymphoblastoid cells. J Pathol 126(3):181–187

Russell SW, Rosenau W, Lee JC (1972) Cytolysis induced by human lymphotoxin: cinemicrographic and electron microscopic observations. Am J Pathol 69(1):103

Sahai E, Marshall CJ (2003) Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5(8):711–719

Schütz K, Keller H (1998) Protrusion, contraction and segregation of membrane components associated with passive deformation and shape recovery of Walker carcinosarcoma cells. Eur J Cell Biol 77(2):100–110

Sheetz MP, Sable JE, Döbereiner HG (2006) Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics. Annu Rev Biophys Biomol Struct 35:417–434

Skalak R, Tozeren A, Zarda RP, Chien S (1973) Strain energy function of red blood cell membranes. Biophys J 13(3):245–264

Spangler EJ, Harvey CW, Revalee JD, Sunil Kumar PB, Laradji M (2011) Computer simulation of cytoskeleton-induced blebbing in lipid membranes. Phys Rev E 84:051906

Strychalski W, Guy RD (2012) A computational model of bleb formation. Math Med Biol 30:115–130

Tinevez JY, Schulze U, Salbreux G, Roensch J, Joanny JF, Paluch E (2009) Role of cortical tension in bleb growth. Proc Natl Acad Sci 106(44):18581–18586

Tongen A, Goriely A, Tabor M (2006) Biomechanical model for appressorial design in

*Magnaporthe grisea*. J Theor Biol 240(1):1–8Young J, Mitran S (2010) A numerical model of cellular blebbing: a volume-conserving, fluid-structure interaction model of the entire cell. J Biomech 43:210–220

## Acknowledgments

This publication is based on work supported by Award No. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST). AG is a Wolfson Royal Society Merit Holder and acknowledges support from a Reintegration Grant under EC Framework VII.

## Author information

### Affiliations

### Corresponding author

## Appendix: Geometric model

### Appendix: Geometric model

In this appendix, we summarise the equations that relate the radius, *R*, of an initial sphere to the radii, \(r_b\) and \(r_c\), of an equivalent volume system of two spheres connected through a pinned neck region, see Fig. 17. We follow the geometric construction of a blebbing cell as derived by Hu (2009).

From Fig. 17, we see that the equality

must always hold. Further, we demand that the cell volume be constant,

Finally, we define the bleb volume fraction, *x*, as \(v_b=xV\), and hence, the cell volume fraction is \(v_c=(1-x)V\). This parameter \(x\) is an input to the problem.

From Eqs. (39) and (40), we can derive equations satisfied by the radii and connection angles:

where \(R,\,\varTheta \) and *x* all input parameters. Observe that *x* is varied from the initial bleb volume ratio,

to the maximal bleb ratio, \(1-x_0\).

Originally, *R* was taken as a free variable (Hu 2009). However, using Eqs. (19)–(25) and assuming spherical symmetry of the solution, we can derive the initial radius of the unweakened cell, *R*. The unique solution can be seen to be:

Substituting these back into the constitutive Eq. (16), we find

The positive root of this quadratic, which depends on \(\varDelta P,\,\rho ,\,A\) and \(\mu \), then provides the desired radius.

## Rights and permissions

## About this article

### Cite this article

Woolley, T.E., Gaffney, E.A., Oliver, J.M. *et al.* Cellular blebs: pressure-driven, axisymmetric, membrane protrusions.
*Biomech Model Mechanobiol* **13, **463–476 (2014). https://doi.org/10.1007/s10237-013-0509-9

Received:

Accepted:

Published:

Issue Date:

### Keywords

- Bleb
- Shell model
- Force balance
- Membrane growth
- Cell mechanics