Skip to main content
Log in

Multiscale modeling of blood flow: from single cells to blood rheology

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Mesoscale simulations of blood flow, where the red blood cells are described as deformable closed shells with a membrane characterized by bending rigidity and stretching elasticity, have made much progress in recent years to predict the flow behavior of blood cells and other components in various flows. To numerically investigate blood flow and blood-related processes in complex geometries, a highly efficient simulation technique for the plasma and solutes is essential. In this review, we focus on the behavior of single and several cells in shear and microcapillary flows, the shear-thinning behavior of blood and its relation to the blood cell structure and interactions, margination of white blood cells and platelets, and modeling hematologic diseases and disorders. Comparisons of the simulation predictions with existing experimental results are made whenever possible, and generally very satisfactory agreement is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

MD:

Molecular dynamics

DPD:

Dissipative particle dynamics

MPC:

Multiparticle collision dynamics

SPH:

Smoothed particle hydrodynamics

BD:

Brownian dynamics

LBM:

Lattice Boltzmann method

CFD:

Computational fluid dynamics

IBM:

Immersed boundary method

FTM:

Front tracking method

RBC:

Red blood cell

WBC:

White blood cell

GUV:

Giant unilamellar vesicle

KS:

Keller–Skalak theory

RDF:

Radial distribution function

CFL:

Cell-free layer

Pf:

Plasmodium falciparum

ATP:

Adenosine triphosphate

2D:

Two dimensions

3D:

Three dimensions

References

  • Abbitt KB, Nash GB (2003) Rheological properties of the blood influencing selectin-mediated adhesion of flowing leukocytes. Am J Physiol 285:H229–H240

    Google Scholar 

  • Abkarian M, Lartigue C, Viallat A (2002) Tank treading and unbinding of deformable vesicles in shear flow: determination of the lift force. Phys Rev Lett 88:068103

    Google Scholar 

  • Abkarian M, Faivre M, Stone HA (2006) High-speed microfluidic differential manometer for cellular-scale hydrodynamics. Proc Natl Acad Sci USA 103:538–542

    Google Scholar 

  • Abkarian M, Faivre M, Viallat A (2007) Swinging of red blood cells under shear flow. Phys Rev Lett 98:188302

    Google Scholar 

  • Abkarian M, Faivre M, Horton R, Smistrup K, Best-Popescu CA, Stone HA (2008) Cellular-scale hydrodynamics. Biomed Mater 3:034011

    Google Scholar 

  • Ahlrichs P, Dünweg B (1999) Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics. J Chem Phys 111:8225–8239

    Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, New York

    MATH  Google Scholar 

  • Alon R, Hammer DA, Springer TA (1995) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature (London) 374:539–542

    Google Scholar 

  • Antia M, Herricks T, Rathod PK (2007) Microfluidic modeling of cell-cell interactions in malaria pathogenesis. PLoS Pathogens 3(7):939–945

    Google Scholar 

  • Bagchi P, Popel AS, Johnson PC (2005) Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J Biomech Eng 127(7):1070–1080

    Google Scholar 

  • Bagchi P (2007) Mesoscale simulation of blood flow in small vessels. Biophys J 92:1858–1877

    Google Scholar 

  • Bagge U, Karlsson R (1980) Maintenance of white blood cell margination at the passage through small venular junctions. Microvasc Res 20:92–95

    Google Scholar 

  • Bao G, Suresh S (2003) Cell and molecular mechanics of biological materials. Nature Mater 2:715–725

    Google Scholar 

  • Beaucourt J, Rioual F, Séon T, Biben T, Misbah C (2004) Steady to unsteady dynamics of a vesicle in a flow. Phys Rev E 69:011906

    Google Scholar 

  • Beck WS (ed) (1991) Hematology, 5th edn. MIT Press, Cambridge

    Google Scholar 

  • Biben T, Kassner K, Misbah C (2005) Phase-field approach to three-dimensional vesicle dynamics. Phys Rev E 72:041921

    Google Scholar 

  • Bow H, Pivkin IV, Diez-Silva M, Goldfless SJ, Dao M, Niles JC, Suresh S, Han J (2011) A microfabricated deformability-based flow cytometer with application to malaria. Lab Chip 11:1065–1073

    Google Scholar 

  • Brown H, Hien TT, Day N, Mai NTH, Chuong LV, Chau TTH, Loc PP, Phu NH, Bethe D, Farrar J, Gatter K, White N, Turner G (1999) Evidence of blood-brain barrier dysfunction in human cerebral malaria. Neuropathol Appl Neurobiol 25(4):331–340

    Google Scholar 

  • Bugliarello G, Sevilla J (1970) Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 7:85–107

    Google Scholar 

  • Cantat I, Misbah C (1999) Lift force and dynamical unbinding of adhering vesicles under shear flow. Phys Rev Lett 83:880–883

    Google Scholar 

  • Chien S, Usami S, Taylor HM, Lundberg JL, Gregersen MI (1966) Effects of hematocrit and plasma proteins on human blood rheology at low shear rates. J Appl Physiol 21(1):81–87

    Google Scholar 

  • Chien S, Usami S, Kellenback RJ, Gregersen MI (1970) Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology. Am J Physiol 219(1):143–153

    Google Scholar 

  • Chien S, Sung LA, Kim S, Burke AM, Usami S (1977) Determination of aggregation force in rouleaux by fluid mechanical technique. Microvasc Res 13:327–333

    Google Scholar 

  • Cokelet G, Merrill EW, Gilliland ER, Shin H, Britten A, Wells JRE (1963) The rheology of human blood-measurement near and at zero shear rate. Trans Soc Rheol 7:303–317

    Google Scholar 

  • Copley AL, Huang CR, King RG (1973) Rheogoniometric studies of whole human blood at shear rates from 1,000–0.0009 \(\text{ sec }^{-1}\). Part I. Experimental findings. Biorheology 10:17–22

    Google Scholar 

  • Crowl L, Fogelson AL (2010) Computational model of whole blood exhibiting lateral platelet motion induced by red blood cells. Int J Numer Methods Biomed Eng 26:471–487

    MATH  MathSciNet  Google Scholar 

  • Crowl L, Fogelson AL (2011) Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions. J Fluid Mech 676:348–375

    MATH  MathSciNet  Google Scholar 

  • Dao M, Li J, Suresh S (2006) Molecularly based analysis of deformation of spectrin network and human erythrocyte. Mater Sci Eng C 26:1232–1244

    Google Scholar 

  • Davis JA, Inglis DW, Morton KM, Lawrence DA, Huang LR, Chou SY, Sturm JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci USA 103:14779

    Google Scholar 

  • Deuling HJ, Helfrich W (1976) Red blood cell shapes as explained on the basis of curvature elasticity. Biophys J 16:861–868

    Google Scholar 

  • Diez-Silva M, Dao M, Han J, Lim CT, Suresh S (2010) Shape and biomechanical characteristics of human red blood cells in health and disease. MRS Bull 35:382–388

    Google Scholar 

  • Dintenfass L (1980) Molecular rheology of human blood; its role in health and disease (today and tomorrow). In: Astarita G, Marrucci G, Nicilais L (eds) Proceedings of 8th international congress on rheology (Naples), vol 3, pp 467–480.

  • Discher DE, Mohandas N, Evans EA (1994) Molecular maps of red cell deformation: hidden elasticity and in situ connectivity. Science 266:1032–1035

    Google Scholar 

  • Discher DE, Boal DH, Boey SK (1998) Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophys J 75(3):1584–1597

    Google Scholar 

  • Doddi SK, Bagchi P (2009) Three-dimensional computational modeling of multiple deformable cells flowing in microvessels. Phys Rev E 79:046318

    Google Scholar 

  • Du Q, Liu C, Wang X (2004) A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J Comput Phys 198:450–468

    MATH  MathSciNet  Google Scholar 

  • Dupin MM, Halliday I, Care CM, Alboul L, Munn LL (2007) Modeling the flow of dense suspensions of deformable particles in three dimensions. Phys Rev E 75(6):066707

    Google Scholar 

  • Ermak DL, McCammon JA (1978) Brownian dynamics with hydrodynamic interactions. J Chem Phys 69:1352–1360

    Google Scholar 

  • Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30(4):191–196

    Google Scholar 

  • Fahraeus R (1929) The suspension stability of blood. Physiol Rev 9:241–274

    Google Scholar 

  • Fahraeus R, Lindqvist T (1931) Viscosity of blood in narrow capillary tubes. Am J Phys 96:562–568

    Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2010a) A multiscale red blood cell model with accurate mechanics, rheology, and dynamics. Biophys J 98(10):2215–2225

    Google Scholar 

  • Fedosov DA, Caswell B, Popel AS, Karniadakis GE (2010b) Blood flow and cell-free layer in microvessels. Microcirculation 17:615–628

    Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2010c) Systematic coarse-graining of spectrin-level red blood cell models. Comput Methods Appl Mech Eng 199:1937–1948

    MATH  MathSciNet  Google Scholar 

  • Fedosov DA, Lei H, Caswell B, Suresh S, Karniadakis GE (2011a) Multiscale modeling of red blood cell mechanics and blood flow in malaria. PLoS Comput Biol 7:e1002270

    MathSciNet  Google Scholar 

  • Fedosov DA, Pan W, Caswell B, Gompper G, Karniadakis GE (2011b) Predicting human blood viscosity in silico. Proc Natl Acad Sci USA 108:11772–11777

    Google Scholar 

  • Fedosov DA, Caswell B, Suresh S, Karniadakis GE (2011c) Quantifying the biophysical characteristics of plasmodium-falciparum-parasitized red blood cells in microcirculation. Proc Natl Acad Sci USA 108:35–39

    Google Scholar 

  • Fedosov DA, Caswell B, Karniadakis GE (2011d) Wall shear stress-based model for adhesive dynamics of red blood cells in malaria. Biophys J 100(9):2084–2093

    Google Scholar 

  • Fedosov DA, Fornleitner J, Gompper G (2012) Margination of white blood cells in microcapillary flow. Phys Rev Lett 108:028104

    Google Scholar 

  • Finken R, Lamura A, Seifert U, Gompper G (2008) Two-dimensional fluctuating vesicles in linear shear flow. Eur Phys J E 25:309– 321

    Google Scholar 

  • Firrell JC, Lipowsky HH (1989) Leukocyte margination and deformation in mesenteric venules of rat. Am J Physiol 256:H1667– H1674

    Google Scholar 

  • Fischer TM (2004) Shape memory of human red blood cells. Biophys J 86(5):3304–3313

    Google Scholar 

  • Fischer TM (2007) Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium. Biophys J 93(7):2553–2561

    Google Scholar 

  • Forsyth AM, Wan J, Owrutsky PD, Abkarian M, Stone HA (2011) Multiscale approach to link red blood cell dynamics, shear viscosity, and ATP release. Proc Natl Acad Sci USA 108:10986–10991

    Google Scholar 

  • Franceschini E, Yu FT, Destrempes F, Cloutier G (2010) Ultrasound characterization of red blood cell aggregation with intervening attenuating tissue-mimicking phantoms. J Acoust Soc Am 127:1104–1115

    Google Scholar 

  • Freund JB (2007) Leukocyte margination in a model microvessel. Phys Fluids 19:023301

    Google Scholar 

  • Freund JB, Orescanin MM (2011) Cellular flow in a small blood vessel. J Fluid Mech 671:466–490

    MATH  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Google Scholar 

  • Gaehtgens P, Dührssen C, Albrecht KH (1980) Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes. Blood Cells 6:799–812

    Google Scholar 

  • Goldsmith HL, Skalak R (1975) Hemodynamics. Annu Rev Fluid Mech 7:213–247

    Google Scholar 

  • Goldsmith HL, Spain S (1984) Margination of leukocytes in blood flow through small tubes. Microvasc Res 27:204–222

    Google Scholar 

  • Gompper G, Kroll DM (1996) Random surface discretizations and the renormalization of the bending rigidity. J Phys I France 6:1305–1320

    Google Scholar 

  • Gompper G, Kroll DM (1997) Network models of fluid, hexatic and polymerized membranes. J Phys Condens Matter 9: 8795–8834

    Google Scholar 

  • Gompper G, Kroll DM (2004) Triangulated-surface models of fluctuating membranes. In: Nelson DR, Piran T, Weinberg S (eds) Statistical mechanics of membranes and surfaces, 2nd edn. World Scientific, Singapore, pp 359–426

  • Gompper G, Ihle T, Kroll DM, Winkler RG (2009) Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Adv Polym Sci 221:1–87

    Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforschung C 28:693–703

    Google Scholar 

  • Henon S, Lenormand G, Richert A, Gallet F (1999) A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys J 76:1145–1151

    Google Scholar 

  • Higgins JM, Eddington DT, Bhatia SN, Mahadevan L (2007) Sickle cell vasoocclusion and rescue in a microfluidic device. Proc Natl Acad Sci USA 104(51):20496–20500

    Google Scholar 

  • Holm SH, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332

    Google Scholar 

  • Hoogerbrugge PJ, Koelman JMVA (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19(3):155–160

    Google Scholar 

  • Hosseini SM, Feng JJ (2012) How malaria parasites reduce the deformability of infected RBC. Biophys J 103:1–10

    Google Scholar 

  • Hou HW, Bhagat AAS, Chong AGL, Mao P, Tan KSW, Han J, Lim CT (2010) Deformability based cell margination–a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613

    Google Scholar 

  • Imai Y, Kondo H, Ishikawa T, Lim CT, Yamaguchi T (2010) Modeling of hemodynamics arising from malaria infection. J Biomech 43:1386–1393

    Google Scholar 

  • Imai Y, Nakaaki K, Kondo H, Ishikawa T, Lim CT, Yamaguchi T (2011) Margination of red blood cells infected by Plasmodium falciparum in a microvessel. J Biomech 44:1553–1558

    Google Scholar 

  • Inglis DW, Davis JA, Zieziulewicz TJ, Lawrence DA, Austin RH, Sturm JC (2008) Determining blood cell size using microfluidic hydrodynamics. J Immunol Methods 329:151–156

    Google Scholar 

  • Jadhav S, Eggleton CD, Konstantopoulos K (2005) A 3-D computational model predicts that cell deformation affects selectin-mediated leukocyte rolling. Biophys J 88:96–104

    Google Scholar 

  • Jain A, Munn LL (2009) Determinants of leukocyte margination in rectangular microchannels. PLoS ONE 4:e7104

    Google Scholar 

  • Janoschek F, Toschii F, Harting J (2010) Simplified particulate model for coarse-grained hemodynamics simulations. Phys Rev E 82:056710

    Google Scholar 

  • Kaoui B, Ristow GH, Cantat I, Misbah C, Zimmermann W (2008) Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. Phys Rev E 77:021903

    Google Scholar 

  • Kaoui B, Biros G, Misbah C (2009) Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys Rev Lett 103: 188101

    Google Scholar 

  • Kaoui B, Biros G, Misbah C (2011) Complexity of vesicle microcirculation. Phys Rev E 84:041906

    Google Scholar 

  • Kaoui B, Krüger T, Harting J (2012) How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter 8:9246–9252

    Google Scholar 

  • Kapral R (2008) Multiparticle collision dynamics: simulation of complex systems on mesoscales. Adv Chem Phys 140:89–146

    Google Scholar 

  • Keller SR, Skalak R (1982) Motion of a tank-treading ellipsoidal particle in a shear flow. J Fluid Mech 120:27–47

    MATH  Google Scholar 

  • Khismatullin DB, Truskey GA (2005) Three-dimensional numerical simulation of receptor-mediated leukocyte adhesion to surfaces: effects of cell deformability and viscoelasticity. Phys. Fluids 17:031505

    Google Scholar 

  • Kim S, Long LR, Popel AS, Intaglietta M, Johnson PC (2007) Temporal and spatial variations of cell-free layer width in arterioles. Am J Physiol 293:H1526–H1535

    Google Scholar 

  • King MR, Hammer DA (2001) Multiparticle adhesive dynamics: Hydrodynamic recruitment of rolling leukocytes. Proc Natl Acad Sci USA 98:14919–14924

    Google Scholar 

  • Korn CB, Schwarz US (2008) Dynamic states of cells adhering in shear flow: from slipping to rolling. Phys Rev E 77(4):041904

    Google Scholar 

  • Krüger T, Varnik F, Raabe D (2011) Particle stress in suspensions of soft objects. Philos Trans R Soc A 369:2414–2421

    MATH  Google Scholar 

  • Lei H, Karniadakis GE (2012a) Predicting the morphology of sickle red blood cells using coarse-grained models of intracellular aligned hemoglobin polymers. Soft Matter 8:4507–4516

    Google Scholar 

  • Lei H, Karniadakis GE (2012b) Quantifying the rheological and hemodynamic characteristics of sickle cell anemia. Biophys J 102: 185–194

    Google Scholar 

  • Li J, Dao M, Lim CT, Suresh S (2005) Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys J 88:3707–3719

    Google Scholar 

  • Liu Y, Liu WK (2006) Rheology of red blood cell aggregation by computer simulation. J Comput Phys 220:139–154

    MATH  MathSciNet  Google Scholar 

  • Lowe GDO (1998) Clinical blood rheology, vol I. CRC Press, Boca Raton, FL, II

    Google Scholar 

  • Lucy LB (1977) A numerical approach to testing the fission hypothesis. Astron J 82:1013–1024

    Google Scholar 

  • MacMeccan RM, Clausen JR, Neitzel GP, Aidun CK (2009) Simulating deformable particle suspensions using a coupled lattice-Boltzmann and finite-element method. J Fluid Mech 618:13–39

    Google Scholar 

  • Maeda N, Suzuki Y, Tanaka J, Tateishi N (1996) Erythrocyte flow and elasticity of microvessels evaluated by marginal cell-free layer and flow resistance. Am J Physiol 271(6):H2454–H2461

    Google Scholar 

  • Malevanets A, Kapral R (1999) Mesoscopic model for solvent dynamics. J Chem Phys 110(17):8605–8613

    Google Scholar 

  • McWhirter JL, Noguchi H, Gompper G (2009) Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc Natl Acad Sci USA 106(15):6039–6043

    Google Scholar 

  • McWhirter JL, Noguchi H, Gompper G (2011) Deformation and clustering of red blood cells in microcapillary flows. Soft Matter 7:10967–10977

    Google Scholar 

  • McWhirter JL, Noguchi H, Gompper G (2012) Ordering and arrangement of deformed red blood cells in flow through microcapillaries. New J Phys 14:085026

    Google Scholar 

  • Melchionna S (2011) A model for red blood cells in simulations of large-scale blood flows. Macromol Theory Simul 20: 548–561

    Google Scholar 

  • Merrill EW, Gilliland ER, Cokelet G, Shin H, Britten A, Wells JRE (1963) Rheology of human blood near and at zero flow. Biophys J 3:199–213

    Google Scholar 

  • Merrill EW, Gilliland ER, Lee TS, Salzman EW (1966) Blood rheology: effect of fibrinogen deduced by addition. Circ Res 18:437– 446

    Google Scholar 

  • Messlinger S, Schmidt B, Noguchi H, Gompper G (2009) Dynamical regimes and hydrodynamic lift of viscous vesicles under shear. Phys Rev E 80:011901

    Google Scholar 

  • Misbah C (2006) Vacillating breathing and tumbling of vesicles under shear flow. Phys Rev Lett 96:028104

    Google Scholar 

  • Mohandas N, Evans E (1994) Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu Rev Biophys Biomol Struct 23:787–818

    Google Scholar 

  • Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Progress Phys 68:1703–1759

    MathSciNet  Google Scholar 

  • Noguchi H, Gompper G (2004) Fluid vesicles with viscous membranes in shear flow. Phys Rev Lett 93:258102

    Google Scholar 

  • Noguchi H, Gompper G (2005a) Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc Natl Acad Sci USA 102(40):14159–14164

    Google Scholar 

  • Noguchi H, Gompper G (2005b) Dynamics of fluid vesicles in shear flow: effect of the membrane viscosity and thermal fluctuations. Phys Rev E 72(1):011901

    Google Scholar 

  • Noguchi H, Gompper G (2007) Swinging and tumbling of fluid vesicles in shear flow. Phys Rev Lett 98:128103

    Google Scholar 

  • Noguchi H (2009a) Membrane simulation models from nanometer to micrometer scale. J Phys Soc Jpn 78:041007

    Google Scholar 

  • Noguchi H (2009b) Swinging and synchronized rotations of red blood cells in simple shear flow. Phys Rev E 80:021902

    Google Scholar 

  • Noguchi H, Gompper G, Schmid L, Wixforth A, Franke T (2010) Dynamics of fluid vesicles in flow through structured microchannels. Europhys Lett 89:28002

    Google Scholar 

  • Noguchi H (2010a) Dynamic modes of microcapsules in steady shear flow: effects of bending and shear elasticities. Phys Rev E 81:056319

    Google Scholar 

  • Noguchi H (2010b) Dynamics of fluid vesicles in oscillatory shear flow. Phys Rev E 81:0619201

    Google Scholar 

  • Noguchi H (2010c) Dynamics of fluid vesicles in oscillatory shear flow. J Phys Soc Jpn 79:024801

    Google Scholar 

  • Pan W, Caswell B, Karniadakis GE (2010) A low-dimensional model for the red blood cell. Soft Matter 6:4366–4376

    Google Scholar 

  • Pan W, Fedosov DA, Caswell B, Karniadakis GE (2011) Predicting dynamics and rheology of blood flow: a comparative study of multiscale and low-dimensional models of red blood cells. Microvasc Res 82:163–170

    Google Scholar 

  • Pearson MJ, Lipowsky HH (2000) Influence of erythrocyte aggregation on leukocyte margination in postcapillary venules of rat mesentery. Am J Physiol 279:H1460–H1471

    Google Scholar 

  • Picart C, Piau JM, Galliard H (1998) Human blood shear yield stress and its hematocrit dependence. J Rheol 42:1–12

    Google Scholar 

  • Pivkin IV, Karniadakis GE (2008) Accurate coarse-grained modeling of red blood cells. Phys Rev Lett 101(11):118105

    Google Scholar 

  • Pozrikidis C (1989) A study of linearized oscillatory flow past particles by the boundary integral method. J Fluid Mech 202:17–41

    MATH  MathSciNet  Google Scholar 

  • Pozrikidis C (2005) Axisymmetric motion of a file of red blood cells through capillaries. Phys Fluids 17:031503

    MathSciNet  Google Scholar 

  • Pries AR, Neuhaus D, Gaehtgens P (1992) Blood viscosity in tube flow: dependence on diameter and hematocrit. Am J Physiol 263(6):H1770–H1778

    Google Scholar 

  • Quinn DJ, Pivkin I, Wong SY, Chiam KH, Dao M, Karniadkais GE, Suresh S (2011) Combined simulation and experimental study of large deformation of red blood cells in microfluidic systems. Ann Biomed Eng 39(3):1041–1050

    Google Scholar 

  • Reasor DA Jr, Clausen JR, Aidun CK (2012) Coupling the lattice-Boltzmann and spectrin-link methods for the direct numerical simulation of cellular blood flow. Int J Numer Methods Fluids 68:767–781

    MATH  MathSciNet  Google Scholar 

  • Reinke W, Gaehtgens P, Johnson PC (1987) Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. Am J Physiol 253:H540–H547

    Google Scholar 

  • Robertson AM, Sequeira A, Kameneva MV (2008) Hemodynamical flows. Modeling, analysis and simulation. In: Oberwolfach seminars, vol 37. Birkhauser Verlag, Basel, pp 63–120.

  • Scheffer L, Bitler A, Ben-Jacob E, Korenstein F (2001) Atomic force pulling: probing the local elasticity of the cell membrane. Eur Biophys J 30:83–90

    Google Scholar 

  • Schmidt B, Fraternali F (2012) Universal formulae for the limiting elastic energy of membrane networks. J Mech Phys Solids 60:172–180

    MATH  MathSciNet  Google Scholar 

  • Seung HS, Nelson DR (1988) Defects in flexible membranes with crystalline order. Phys Rev A 38:1005–1018

    Google Scholar 

  • Shelby JP, White J, Ganesan K, Rathod PK, Chiu DT (2003) A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 100:14618–14622

    Google Scholar 

  • Skalak R (1969) Deformation of red blood cells in capillaries. Science 164:717–719

    Google Scholar 

  • Skalak R, Keller SR, Secomb TW (1981) Mechanics of blood flow. J Biomech Eng 103:102–115

    Google Scholar 

  • Skotheim JM, Secomb TW (2007) Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys Rev Lett 98:078301

    Google Scholar 

  • Springer TA (1995) Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 57:827–872

    Google Scholar 

  • Succi S (2001) The Lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford

  • Sukumaran S, Seifert U (2001) Influence of shear flow on vesicles near a wall: a numerical study. Phys Rev E 64:011916

    Google Scholar 

  • Sun C, Migliorini C, Munn LL (2003) Red blood cells initiate leukocyte rolling in postcapillary expansions: a lattice Boltzmann analysis. Biophys J 85:208–222

    Google Scholar 

  • Sun C, Munn LL (2005) Particulate nature of blood determines macroscopic rheology: a 2D lattice-Boltzmann analysis. Biophys J 88:1635–1645

    Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomaterialia 1:15–30

    Google Scholar 

  • Suzuki Y, Tateishi N, Soutani M, Maeda N (1996) Deformation of erythrocytes in microvessels and glass capillaries: effect of erythrocyte deformability. Microcirciculation 3(1):49–57

    Google Scholar 

  • Tangelder GJ, Teirlinck HC, Slaaf DW, Reneman RS (1985) Distribution of blood platelets flowing in arterioles. Am J Physiol 248:H318–H323

    Google Scholar 

  • Tokarev AA, Butylin AA, Ermakova EA, Shnol EE, Panasenko GP, Ataullakhanov FI (2011) Finite platelet size could be responsible for platelet margination effect. Biophys J 101:1835–1843

    Google Scholar 

  • Tomaiuolo G, Simeone M, Martinelli V, Rotoli B, Guido S (2009) Red blood cell deformation in microconfined flow. Soft Matter 5:3736–3740

    Google Scholar 

  • Tran-Son-Tay R, Sutera SP, Rao PR (1984) Determination of RBC membrane viscosity from rheoscopic observations of tank-treading motion. Biophys J 46(1):65–72

    Google Scholar 

  • Vaziri A, Gopinath A (2008) Cell and biomolecular mechanics in silico. Nat Mater 7:15–23

    Google Scholar 

  • Wang H, Skalak R (1969) Viscous flow in a cylindrical tube containing a line of spherical particles. J Fluid Mech 38:75–96

    MATH  Google Scholar 

  • Wang T, Pan TW, Xing ZW, Glowinski R (2009) Numerical simulation of rheology of red blood cell rouleaux in microchannels. Phys Rev E 79(4):041916

    Google Scholar 

  • Waugh R, Evans EA (1979) Thermoelasticity of red blood cell membrane. Biophys J 26(1):115–131

    Google Scholar 

  • Wendt JF (ed) (2009) Computational fluid dynamics, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Yamaguchi S, Yamakawa T, Niimi H (1992) Cell-free plasma layer in cerebral microvessels. Biorheology 29:251–260

    Google Scholar 

  • Yazdani AZK, Kalluri RM, Bagchi P (2011) Tank-treading and tumbling frequencies of capsules and red blood cells. Phys Rev E 83:046305

    Google Scholar 

  • Zhao Q, Durand LG, Allard L, Cloutier G (1998) Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power. Ultrasound Med. Biol. 24:503–511

    Google Scholar 

  • Zhao H, Isfahani AHG, Olson LN, Freund JB (2010) A spectral boundary integral method for flowing blood cells. J Comput Phys 229:3726–3744

    MATH  MathSciNet  Google Scholar 

  • Zhao H, Shaqfeh ESG (2011a) The dynamics of a vesicle in simple shear flow. J Fluid Mech 674:578–604

    MATH  MathSciNet  Google Scholar 

  • Zhao H, Shaqfeh ESG (2011b) Shear-induced platelet margination in a microchannel. Phys Rev E 83:061924

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge support by the German Science Foundation (DFG) through the research unit FOR 1543, “Shear flow regulation of hemostasis—bridging the gap between nanomechanics and clinical presentation (SHENC)”. We thank the Jülich Supercomputing Centre (JSC) at the Forschungszentrum Jülich for providing computer resources. D.A.F. acknowledges funding by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. Fedosov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedosov, D.A., Noguchi, H. & Gompper, G. Multiscale modeling of blood flow: from single cells to blood rheology. Biomech Model Mechanobiol 13, 239–258 (2014). https://doi.org/10.1007/s10237-013-0497-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-013-0497-9

Keywords

Navigation