Skip to main content

Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform


Patient-specific cardiac modelling can help in understanding pathophysiology and predict therapy planning. However, it requires to personalize the model geometry, kinematics, electrophysiology and mechanics. Calibration aims at providing proper initial values of parameters before performing the personalization stage which involves solving an inverse problem. We propose a fast automatic calibration method of the mechanical parameters of a complete electromechanical model of the heart based on a sensitivity analysis and the Unscented Transform algorithm. A new implementation of the complete Bestel–Clement–Sorine (BCS) cardiac model is also proposed, in a modular and efficient framework. A complete sensitivity analysis is performed that reveals which observations on the volume evolution are significant to characterize the global behaviour of the myocardium. We show that the calibration method gives satisfying results by optimizing up to 5 parameters of the BCS model in only one iteration. This method was evaluated synthetically as well as on 7 volunteers with a mean relative error from the real data of 10 %. This calibration is designed to replace manual parameter estimation as well as initialization steps that precede automatic personalization algorithms based on images.

This is a preview of subscription content, access via your institution.


  • Bestel J, Clement F, Sorine M (2001) A biomechanical model of muscle contraction. In: Medical image computing and computer assisted intervention (MICCAI), pp 1159–1161

  • Billet F (2010) Assimilation de données images pour la personnalisation d’un modèle électromécanique du coeur. PhD thesis, Université de Nice -Sophia Antipolis. (in French)

  • Chabiniok R (2011) Personalized biomechanical heart modeling for clinical applications. PhD thesis, Université Pierre et Marie Curie, Paris 6

  • Chabiniok R, Moireau P, Lesault P, Rahmouni A, Deux J, Chapelle D (2011) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 1–22

  • Chapelle D, Le Tallec P, Moireau P, Sorine M (2012) An energy-preserving muscle tissue model: formulation and compatible discretizations. Int J Multiscale Comput Eng 10(2): 189–211

    Article  Google Scholar 

  • Costa KD, Holmes J, McCulloch AD (2001) Modelling cardiac mechanical properties in three dimensions. Phil Trans R Soc Lond 359: 1233–1250

    Article  MATH  Google Scholar 

  • Delingette H, Ayache N (2004) Soft tissue modeling for surgery simulation. In: Computational models for the human body. Elsevier, Amsterdam, pp 453–550

  • Delingette H, Billet F, Wong KCL, Sermesant M, Rhode K, Ginks M, Rinaldi CA, Razavi R, Ayache N (2012) Personalization of cardiac motion and contractility from images using variational data assimilation. IEEE Trans Biomed Eng 59(1): 20–24

    Article  Google Scholar 

  • Ecabert O, Peters J, Walker MJ, Ivanc T, Lorenz C, von Berg J, jonathan Lessick, mani Vembar, Weese J (2011) Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 15(6): 863–876

    Article  Google Scholar 

  • Holzapfel G, Ogden R (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Transact A Math Phys Eng Sci 367(1902): 3445–3475

    Article  MathSciNet  MATH  Google Scholar 

  • Humphrey J, Strumpf R, Yin F (1990) Determination of a constitutive relation for passive myocardium: I. a new functional form. J Biomech Eng 112: 333

    Article  Google Scholar 

  • Hunter P, Nash M, Sands G (1997) Computational electromechanics of the heart. Comput Biol Heart 345–407

  • Huxley A (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7: 255

    Google Scholar 

  • Julier S, Uhlmann J (1997) A new extension of the Kalman filter to nonlinear systems. In: International symposium on aerospace/defense sensing, simulation and controls, vol 3. Citeseer, p 26

  • Kerckhoffs, RCP (ed) (2010) Patient-specific modeling of the cardiovascular system, technology-driven personalized medicine. Springer, Berlin

    Google Scholar 

  • Larrabide I, Omedas P, Martelli Y, Planes X, Nieber M, Moya J, Butakoff C, Sebastián R, Camara O, De Craene M, et al (2009) Gimias: an open source framework for efficient development of research tools and clinical prototypes. Funct Imaging Model Heart 417–426

  • Liu H, Shi P (2009) Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart. Biomed Eng IEEE Trans 56(2): 378–389

    Article  Google Scholar 

  • Lombaert H, Peyrat JM, Croisille P, Rapacchi S, Fanton L, Clarysse P, Delingette H, Ayache N (2011) Statistical analysis of the human cardiac fiber architecture from DT-MRI. In: Axel L, Metaxas D (eds) Proceedings of FIMH conference 2011, vol 6666. Springer, LNCS, pp 171–179. (best Paper Award)

  • Mansi T, Pennec X, Sermesant M, Delingette H, Ayache N (2011) iLogDemons: a demons-based registration algorithm for tracking incompressible elastic biological tissues. Int J Comput Vis 92(1): 92–111

    Article  Google Scholar 

  • Marchesseau S, Heimann T, Chatelin S, Willinger R, Delingette H (2010) Fast porous visco-hyperelastic soft tissue model for surgery simulation: application to liver surgery. Prog Biophys Mol Biol 103(2–3): 185–196. doi:10.1016/j.pbiomolbio.2010.09.005

    Article  Google Scholar 

  • Mazhari R, McCulloch AD (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricule. J Elast 61(4): 143–164. doi:10.1067/mnc.2001.117113

    MATH  Google Scholar 

  • McLeod K, Prakosa A, Mansi T, Sermesant M, Pennec X (2012) An incompressible log-domain demons algorithm for tracking heart tissue. In: Proceedings of the MICCAI workshop on statistical atlases and computational models of the heart: mapping structure and function (STACOM11), vol 7085. Springer, Toronto, LNCS, pp 54–65. (in press)

  • Moireau P, Chapelle D (2011) Reduced-order unscented kalman filtering with application to parameter identification in large-dimensional systems. COCV 17: 380–405. doi:10.1051/cocv/2010006

    Article  MathSciNet  MATH  Google Scholar 

  • Nash M (1998) Mechanics and material properties of the heart using an anatomically accurate mathematical model. PhD thesis, University of Auckland

  • Peyrat JM, Sermesant M, Pennec X, Delingette H, Xu C, McVeigh ER, Ayache N (2007) A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Trans Med Imaging 26(11):1500–1514. doi:10.1109/TMI.2007.907286, pMID: 18041265

    Google Scholar 

  • Prakosa A, Sermesant M, Delingette H, Saloux E, Allain P, Cathier P, Etyngier P, Villain N, Ayache N (2011) Synthetic Echocardiographic image sequences for cardiac inverse electro-kinematic learning. In: Proceedings of medical image computing and computer assisted intervention (MICCAI), Springer, Heidelberg, Toronto, Canada, LNCS, 8p

  • Relan J, Chinchapatnam P, Sermesant M, Rhode K, Ginks M, Delingette H, Rinaldi CA, Razavi R, Ayache N (2011) Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. J R Soc Interface Focus 1(3): 396–407

    Article  Google Scholar 

  • Sachse F (2004) Computational cardiology: modeling of anatomy, electrophysiology, and mechanics, vol 2966. Springer, Berlin

    Google Scholar 

  • Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84(28): 1743–1759

    Article  MathSciNet  Google Scholar 

  • Schäffler A, Schmidt S (1999) Anatomie Physiologie Biologie. (in French)

  • Sermesant M, Delingette H, Ayache N (2006) An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging 25(5): 612–625

    Article  Google Scholar 

  • Sermesant M, Konukoglu E, Delingette H, Coudiere Y, Chinchaptanam P, Rhode K, Razavi R, Ayache N (2007) An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology. In: Proceedings of functional imaging and modeling of the heart 2007 (FIMH’07), vol 4466. LNCS, pp 160–169

  • Sermesant M, Chabiniok R, Chinchapatnam P, Mansi T, Billet F, Moireau P, Peyrat J, Wong K, Relan J, Rhode K, Ginks M, Lambiase P, Delingette H, Sorine M, Rinaldi C, Chapelle D, Razavi R, Ayache N (2012) Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med Image Anal 16(1): 201–215

    Article  Google Scholar 

  • Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi A, Delingette H, Sermesant M, Relan J, Ayache N, Krueger MW, Schulze W, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P, Weese J, Lehmann H, Chapelle D, Razavi R (2011) Euheart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. J R Soc Interface Focus 1(3): 349–364

    Article  Google Scholar 

  • Sundar H, Davatzikos C, Biros G (2009) Biomechanically-constrained 4D estimation of myocardial motion. Med Image Comput Comput Assist Interv MICCAI 257–265

  • Tobon-Gomez C, De Craene M, Dahl A, Kapetanakis S, Carr-White G, Lutz A, Rasche V, Etyngier P, Kozerke S, Schaffeter T, Riccobene C, Martelli Y, Camara O, Frangi A, Rhode KS (2011) A multimodal database for the 1st cardiac motion analysis challenge. In: Proceedings of MICCAI workshop on statistical atlases and computational models of the heart: mapping structure and function (STACOM11), vol 7085. Springer, Toronto, LNCS, pp 32–43. (in press)

  • Toussaint N, Stoeck CT, Kozerke S, Sermesant M, Batchelor PG (2010) In-vivo human 3D cardiac fibre architecture: reconstruction using curvilinear interpolation of diffusion tensor images. In: Proceedingsof the medical image computing and computer assisted intervention (MICCAI’10), vol 13. Springer, Beijing, China, LNCS, pp 418–425

  • Wan E, Van Der Merwe R (2000) The unscented Kalman filter for nonlinear estimation. In: Adaptive systems for signal processing, communications, and control symposium 2000. AS-SPCC. The IEEE 2000, IEEE, pp 153–158

  • Wang V, Lam H, Ennis D, Cowan B, Young A, Nash M (2009) Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med Image Anal 13(5): 773–784

    Article  Google Scholar 

  • Wong KCL, Wang L, Shi P (2009) Active model with orthotropic hyperelastic material for cardiac image analysis, International conference on functional imaging and modeling of the heart (FIMH’ 2009), LNCS, vol 5528. Springer, pp 229-238

  • Wong KCL, Billet F, Mansi T, Chabiniok R, Sermesant M, Delingette H, Ayache N (2010) Cardiac motion estimation using a proactive deformable model: evaluation and sensitivity analysis. In: MICCAI Workshop on statistical atlases and computational models of the heart: mapping structure and function (STACOM) and a cardiac electrophysiological simulation challenge (CESC’10), vol 6364. Springer, LNCS, pp 154–163

  • Xi J, Lamata P, Lee J, Moireau P, Chapelle D, Smith N (2011) Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter. J Mech Behav Biomed Mater 4(7): 1090–1102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Stéphanie Marchesseau.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marchesseau, S., Delingette, H., Sermesant, M. et al. Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech Model Mechanobiol 12, 815–831 (2013).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Computer model
  • Cardiac mechanics
  • Parameter calibration
  • Medical images
  • Unscented transform