Advertisement

Biomechanics and Modeling in Mechanobiology

, Volume 12, Issue 4, pp 815–831 | Cite as

Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform

  • Stéphanie MarchesseauEmail author
  • Hervé Delingette
  • Maxime Sermesant
  • Nicholas Ayache
Original Paper

Abstract

Patient-specific cardiac modelling can help in understanding pathophysiology and predict therapy planning. However, it requires to personalize the model geometry, kinematics, electrophysiology and mechanics. Calibration aims at providing proper initial values of parameters before performing the personalization stage which involves solving an inverse problem. We propose a fast automatic calibration method of the mechanical parameters of a complete electromechanical model of the heart based on a sensitivity analysis and the Unscented Transform algorithm. A new implementation of the complete Bestel–Clement–Sorine (BCS) cardiac model is also proposed, in a modular and efficient framework. A complete sensitivity analysis is performed that reveals which observations on the volume evolution are significant to characterize the global behaviour of the myocardium. We show that the calibration method gives satisfying results by optimizing up to 5 parameters of the BCS model in only one iteration. This method was evaluated synthetically as well as on 7 volunteers with a mean relative error from the real data of 10 %. This calibration is designed to replace manual parameter estimation as well as initialization steps that precede automatic personalization algorithms based on images.

Keywords

Computer model Cardiac mechanics Parameter calibration Medical images Unscented transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bestel J, Clement F, Sorine M (2001) A biomechanical model of muscle contraction. In: Medical image computing and computer assisted intervention (MICCAI), pp 1159–1161Google Scholar
  2. Billet F (2010) Assimilation de données images pour la personnalisation d’un modèle électromécanique du coeur. PhD thesis, Université de Nice -Sophia Antipolis. (in French)Google Scholar
  3. Chabiniok R (2011) Personalized biomechanical heart modeling for clinical applications. PhD thesis, Université Pierre et Marie Curie, Paris 6Google Scholar
  4. Chabiniok R, Moireau P, Lesault P, Rahmouni A, Deux J, Chapelle D (2011) Estimation of tissue contractility from cardiac cine-MRI using a biomechanical heart model. Biomech Model Mechanobiol 1–22Google Scholar
  5. Chapelle D, Le Tallec P, Moireau P, Sorine M (2012) An energy-preserving muscle tissue model: formulation and compatible discretizations. Int J Multiscale Comput Eng 10(2): 189–211CrossRefGoogle Scholar
  6. Costa KD, Holmes J, McCulloch AD (2001) Modelling cardiac mechanical properties in three dimensions. Phil Trans R Soc Lond 359: 1233–1250zbMATHCrossRefGoogle Scholar
  7. Delingette H, Ayache N (2004) Soft tissue modeling for surgery simulation. In: Computational models for the human body. Elsevier, Amsterdam, pp 453–550Google Scholar
  8. Delingette H, Billet F, Wong KCL, Sermesant M, Rhode K, Ginks M, Rinaldi CA, Razavi R, Ayache N (2012) Personalization of cardiac motion and contractility from images using variational data assimilation. IEEE Trans Biomed Eng 59(1): 20–24CrossRefGoogle Scholar
  9. Ecabert O, Peters J, Walker MJ, Ivanc T, Lorenz C, von Berg J, jonathan Lessick, mani Vembar, Weese J (2011) Segmentation of the heart and great vessels in CT images using a model-based adaptation framework. Med Image Anal 15(6): 863–876CrossRefGoogle Scholar
  10. Holzapfel G, Ogden R (2009) Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Transact A Math Phys Eng Sci 367(1902): 3445–3475MathSciNetzbMATHCrossRefGoogle Scholar
  11. Humphrey J, Strumpf R, Yin F (1990) Determination of a constitutive relation for passive myocardium: I. a new functional form. J Biomech Eng 112: 333CrossRefGoogle Scholar
  12. Hunter P, Nash M, Sands G (1997) Computational electromechanics of the heart. Comput Biol Heart 345–407Google Scholar
  13. Huxley A (1957) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7: 255Google Scholar
  14. Julier S, Uhlmann J (1997) A new extension of the Kalman filter to nonlinear systems. In: International symposium on aerospace/defense sensing, simulation and controls, vol 3. Citeseer, p 26Google Scholar
  15. Kerckhoffs, RCP (ed) (2010) Patient-specific modeling of the cardiovascular system, technology-driven personalized medicine. Springer, BerlinGoogle Scholar
  16. Larrabide I, Omedas P, Martelli Y, Planes X, Nieber M, Moya J, Butakoff C, Sebastián R, Camara O, De Craene M, et al (2009) Gimias: an open source framework for efficient development of research tools and clinical prototypes. Funct Imaging Model Heart 417–426Google Scholar
  17. Liu H, Shi P (2009) Maximum a posteriori strategy for the simultaneous motion and material property estimation of the heart. Biomed Eng IEEE Trans 56(2): 378–389CrossRefGoogle Scholar
  18. Lombaert H, Peyrat JM, Croisille P, Rapacchi S, Fanton L, Clarysse P, Delingette H, Ayache N (2011) Statistical analysis of the human cardiac fiber architecture from DT-MRI. In: Axel L, Metaxas D (eds) Proceedings of FIMH conference 2011, vol 6666. Springer, LNCS, pp 171–179. (best Paper Award)Google Scholar
  19. Mansi T, Pennec X, Sermesant M, Delingette H, Ayache N (2011) iLogDemons: a demons-based registration algorithm for tracking incompressible elastic biological tissues. Int J Comput Vis 92(1): 92–111CrossRefGoogle Scholar
  20. Marchesseau S, Heimann T, Chatelin S, Willinger R, Delingette H (2010) Fast porous visco-hyperelastic soft tissue model for surgery simulation: application to liver surgery. Prog Biophys Mol Biol 103(2–3): 185–196. doi: 10.1016/j.pbiomolbio.2010.09.005 CrossRefGoogle Scholar
  21. Mazhari R, McCulloch AD (2000) Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricule. J Elast 61(4): 143–164. doi: 10.1067/mnc.2001.117113 zbMATHGoogle Scholar
  22. McLeod K, Prakosa A, Mansi T, Sermesant M, Pennec X (2012) An incompressible log-domain demons algorithm for tracking heart tissue. In: Proceedings of the MICCAI workshop on statistical atlases and computational models of the heart: mapping structure and function (STACOM11), vol 7085. Springer, Toronto, LNCS, pp 54–65. (in press)Google Scholar
  23. Moireau P, Chapelle D (2011) Reduced-order unscented kalman filtering with application to parameter identification in large-dimensional systems. COCV 17: 380–405. doi: 10.1051/cocv/2010006 MathSciNetzbMATHCrossRefGoogle Scholar
  24. Nash M (1998) Mechanics and material properties of the heart using an anatomically accurate mathematical model. PhD thesis, University of AucklandGoogle Scholar
  25. Peyrat JM, Sermesant M, Pennec X, Delingette H, Xu C, McVeigh ER, Ayache N (2007) A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Trans Med Imaging 26(11):1500–1514. doi: 10.1109/TMI.2007.907286, pMID: 18041265Google Scholar
  26. Prakosa A, Sermesant M, Delingette H, Saloux E, Allain P, Cathier P, Etyngier P, Villain N, Ayache N (2011) Synthetic Echocardiographic image sequences for cardiac inverse electro-kinematic learning. In: Proceedings of medical image computing and computer assisted intervention (MICCAI), Springer, Heidelberg, Toronto, Canada, LNCS, 8pGoogle Scholar
  27. Relan J, Chinchapatnam P, Sermesant M, Rhode K, Ginks M, Delingette H, Rinaldi CA, Razavi R, Ayache N (2011) Coupled personalization of cardiac electrophysiology models for prediction of ischaemic ventricular tachycardia. J R Soc Interface Focus 1(3): 396–407CrossRefGoogle Scholar
  28. Sachse F (2004) Computational cardiology: modeling of anatomy, electrophysiology, and mechanics, vol 2966. Springer, BerlinGoogle Scholar
  29. Sainte-Marie J, Chapelle D, Cimrman R, Sorine M (2006) Modeling and estimation of the cardiac electromechanical activity. Comput Struct 84(28): 1743–1759MathSciNetCrossRefGoogle Scholar
  30. Schäffler A, Schmidt S (1999) Anatomie Physiologie Biologie. (in French)Google Scholar
  31. Sermesant M, Delingette H, Ayache N (2006) An electromechanical model of the heart for image analysis and simulation. IEEE Trans Med Imaging 25(5): 612–625CrossRefGoogle Scholar
  32. Sermesant M, Konukoglu E, Delingette H, Coudiere Y, Chinchaptanam P, Rhode K, Razavi R, Ayache N (2007) An anisotropic multi-front fast marching method for real-time simulation of cardiac electrophysiology. In: Proceedings of functional imaging and modeling of the heart 2007 (FIMH’07), vol 4466. LNCS, pp 160–169Google Scholar
  33. Sermesant M, Chabiniok R, Chinchapatnam P, Mansi T, Billet F, Moireau P, Peyrat J, Wong K, Relan J, Rhode K, Ginks M, Lambiase P, Delingette H, Sorine M, Rinaldi C, Chapelle D, Razavi R, Ayache N (2012) Patient-specific electromechanical models of the heart for the prediction of pacing acute effects in CRT: a preliminary clinical validation. Med Image Anal 16(1): 201–215CrossRefGoogle Scholar
  34. Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi A, Delingette H, Sermesant M, Relan J, Ayache N, Krueger MW, Schulze W, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P, Weese J, Lehmann H, Chapelle D, Razavi R (2011) Euheart: personalized and integrated cardiac care using patient-specific cardiovascular modelling. J R Soc Interface Focus 1(3): 349–364CrossRefGoogle Scholar
  35. Sundar H, Davatzikos C, Biros G (2009) Biomechanically-constrained 4D estimation of myocardial motion. Med Image Comput Comput Assist Interv MICCAI 257–265Google Scholar
  36. Tobon-Gomez C, De Craene M, Dahl A, Kapetanakis S, Carr-White G, Lutz A, Rasche V, Etyngier P, Kozerke S, Schaffeter T, Riccobene C, Martelli Y, Camara O, Frangi A, Rhode KS (2011) A multimodal database for the 1st cardiac motion analysis challenge. In: Proceedings of MICCAI workshop on statistical atlases and computational models of the heart: mapping structure and function (STACOM11), vol 7085. Springer, Toronto, LNCS, pp 32–43. (in press)Google Scholar
  37. Toussaint N, Stoeck CT, Kozerke S, Sermesant M, Batchelor PG (2010) In-vivo human 3D cardiac fibre architecture: reconstruction using curvilinear interpolation of diffusion tensor images. In: Proceedingsof the medical image computing and computer assisted intervention (MICCAI’10), vol 13. Springer, Beijing, China, LNCS, pp 418–425Google Scholar
  38. Wan E, Van Der Merwe R (2000) The unscented Kalman filter for nonlinear estimation. In: Adaptive systems for signal processing, communications, and control symposium 2000. AS-SPCC. The IEEE 2000, IEEE, pp 153–158Google Scholar
  39. Wang V, Lam H, Ennis D, Cowan B, Young A, Nash M (2009) Modelling passive diastolic mechanics with quantitative MRI of cardiac structure and function. Med Image Anal 13(5): 773–784CrossRefGoogle Scholar
  40. Wong KCL, Wang L, Shi P (2009) Active model with orthotropic hyperelastic material for cardiac image analysis, International conference on functional imaging and modeling of the heart (FIMH’ 2009), LNCS, vol 5528. Springer, pp 229-238Google Scholar
  41. Wong KCL, Billet F, Mansi T, Chabiniok R, Sermesant M, Delingette H, Ayache N (2010) Cardiac motion estimation using a proactive deformable model: evaluation and sensitivity analysis. In: MICCAI Workshop on statistical atlases and computational models of the heart: mapping structure and function (STACOM) and a cardiac electrophysiological simulation challenge (CESC’10), vol 6364. Springer, LNCS, pp 154–163Google Scholar
  42. Xi J, Lamata P, Lee J, Moireau P, Chapelle D, Smith N (2011) Myocardial transversely isotropic material parameter estimation from in-silico measurements based on a reduced-order unscented Kalman filter. J Mech Behav Biomed Mater 4(7): 1090–1102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stéphanie Marchesseau
    • 1
    Email author
  • Hervé Delingette
    • 1
  • Maxime Sermesant
    • 1
  • Nicholas Ayache
    • 1
  1. 1.INRIA, Asclepios Research ProjectSophia Antipolis, NiceFrance

Personalised recommendations