Skip to main content
Log in

Microdomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Cardiac muscle cells are known to adapt to their physical surroundings, optimizing intracellular organization and contractile function for a given culture environment. A previously developed in vitro model system has shown that the inclusion of discrete microscale domains (or microrods) in three dimensions (3D) can alter long-term growth responses of neonatal ventricular myocytes. The aim of this work was to understand how cellular contact with such a domain affects various mechanical changes involved in cardiac muscle cell remodeling. Myocytes were maintained in 3D gels over 5 days in the presence or absence of 100−μm-long microrods, and the effect of this local heterogeneity on cell behavior was analyzed via several imaging techniques. Microrod abutment resulted in approximately twofold increases in the maximum displacement of spontaneously beating myocytes, as based on confocal microscopy scans of the gel xy-plane or the myocyte long axis. In addition, microrods caused significant increases in the proportion of aligned myofibrils (≤20° deviation from long axis) in fixed myocytes. Microrod-related differences in axial contraction could be abrogated by long-term interruption of certain signals of the RhoA-/Rho-associated kinase (ROCK) or protein kinase C (PKC) pathway. Furthermore, microrod-induced increases in myocyte size and protein content were prevented by ROCK inhibition. In all, the data suggest that microdomain heterogeneity in 3D appears to promote the development of axially aligned contractile machinery in muscle cells, an observation that may have relevance to a number of cardiac tissue engineering interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3D:

Three dimensions

AraC:

Cytosine β-D-arabino-furanoside

BSA:

Bovine serum albumin

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

ECL:

Enhanced chemiluminescence

ECM:

Extracellular matrix

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HRP:

Horseradish peroxidase

MLC:

Myosin light chain

MLCK:

Myosin light chain kinase

MLCP:

Myosin light chain phosphatase

PBS:

Phosphate-buffered saline

PKC:

Protein kinase C

PVDF:

Polyvinylidene fluoride

RACK1:

Receptor for activated C-kinase-1

ROCK:

Rho-associated kinase

SEM:

Standard error of measurement

TBST:

Tris-buffered saline-Tween 20

References

  • Ayala P, Lopez JI, Desai TA (2010) Microtopographical Cues in 3D attenuate fibrotic phenotype and extracellular matrix deposition: implications for tissue regeneration. Tissue Eng Part A 16(8): 2519–2527

    Article  Google Scholar 

  • Ayala P, Desai TA (2011) Integrin α3 blockade enhances microtopographical down-regulation of α-smooth muscle actin: role of microtopography in ECM regulation. Integr Biol (Camb) 3(7): 733–741

    Article  Google Scholar 

  • Bakunts K, Gillum N, Karabekian Z, Sarvazyan N (2008) Formation of cardiac fibers in Matrigel matrix. Biotechniques 44(3): 341–348

    Article  Google Scholar 

  • Besson A, Wilson TL, Yong VW (2002) The anchoring protein RACK1 links protein kinase Cepsilon to integrin beta chains. Requirements for adhesion and motility. J Biol Chem 277(24): 22073–22084

    Article  Google Scholar 

  • Bian W, Liau B, Badie N, Bursac N (2009) Mesoscopic hydrogel molding to control the 3D geometry of bioartificial muscle tissues. Nat Protoc 4(10): 1522–1534

    Article  Google Scholar 

  • Bischofs IB, Schwarz US (2003) Cell organization in soft media due to active mechanosensing. Proc Natl Acad Sci USA 100(16): 9274–9279

    Article  Google Scholar 

  • Bray MA, Sheehy SP, Parker KK (2008) Sarcomere alignment is regulated by myocyte shape. Cell Motil Cytoskeleton 65(8): 641–651

    Article  Google Scholar 

  • Budyn E, Hoc T (2010) Analysis of micro fracture in human haversian cortical bone under transverse tension using extended physical imaging. Int J Numer Meth Eng 82(8): 940–965

    Article  MATH  Google Scholar 

  • Chopra A, Tabdanov E, Patel H, Janmey PA, Kresh JY (2011) Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. Am J Physiol Heart Circ Physiol 300(4): H1252–H1266

    Article  Google Scholar 

  • Collins JM, Ayala P, Desai TA, Russell B (2010) Three-dimensional culture with stiff microstructures increases proliferation and slows osteogenic differentiation of human mesenchymal stem cells. Small 6(3): 355–360

    Article  Google Scholar 

  • Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547): 1708–1712

    Article  Google Scholar 

  • Curtis MW, Sharma S, Desai TA, Russell B (2010) Hypertrophy, gene expression, and beating of neonatal cardiac myocytes are affected by microdomain heterogeneity in 3D. Biomed Microdev 12(6): 1073–1085

    Article  Google Scholar 

  • DiMichele LA, Hakim ZS, Sayers RL, Rojas M, Schwartz RJ, Mack CP, Taylor JM (2009) Transient expression of FRNK reveals stage-specific requirement for focal adhesion kinase activity in cardiac growth. Circ Res 104(10): 1201–1208

    Article  Google Scholar 

  • Doumalin P, Bornert M, Caldemaison D (1999) Microextensometry by image correlation applied to micromechanical studies using the scanning electron microscopy. In: Proceedings of the international conference on advanced technology in experimental mechanics, Japan Society of Experimental Engineering, pp 81–86

  • Doumalin P (2000) Microextensométrie locale par corrélation d’images numériques. Dissertation, Ecole Polytechnique

  • Doumalin P, Bornert M, Crepin J (2003) Characterization of the strain distribution in heterogeneous materials. Mecan Ind 6: 607–617

    Article  Google Scholar 

  • Eble DM, Qi M, Waldschmidt S, Lucchesi PA, Byron KL, Samarel AM (1998) Contractile activity is required for sarcomeric assembly in phenylephrine-induced cardiac myocyte hypertrophy. Am J Physiol 274(5 Pt 1): C1226–C1237

    Google Scholar 

  • Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY, Speicher DW, Sanger JW, Sanger JM, Discher DE (2008) Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci 121(Pt 22): 3794–3802

    Article  Google Scholar 

  • Evans HJ, Sweet JK, Price RL, Yost M, Goodwin RL (2003) Novel 3D culture system for study of cardiac myocyte development. Am J Physiol Heart Circ Physiol 285(2): H570–H578

    Google Scholar 

  • Feng Z, Matsumoto T, Nakamura T (2003) Measurements of the mechanical properties of contracted collagen gels populated with rat fibroblasts or cardiomyocytes. J Artif Organs 6(3): 192–196

    Article  Google Scholar 

  • Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol 65(1): 45–79

    Article  Google Scholar 

  • Geisse NA, Sheehy SP, Parker KK (2009) Control of myocyte remodeling in vitro with engineered substrates. In Vitro Cell Dev Biol Anim 45(7): 343–350

    Article  Google Scholar 

  • Geuzaine C, Remacle JF (2009) Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11): 1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  • Goldyn AM, Rioja BA, Spatz JP, Ballestrem C, Kemkemer R (2009) Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. J Cell Sci 122 (Pt 20): 3644–3651

    Article  Google Scholar 

  • Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, Omens JH, McCulloch AD (2003) Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng 81(5): 578–587

    Article  Google Scholar 

  • Grinnell F. (2000) Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol 10(9): 362–365

    Article  Google Scholar 

  • Grosberg A, Kuo PL, Guo CL, Geisse NA, Bray MA, Adams WJ, Sheehy SP, Parker KK (2011) Self-organization of muscle cell structure and function. PLoS Comput Biol 7(2): e1001088

    Article  Google Scholar 

  • Hartman TJ, Martin JL, Solaro RJ, Samarel AM, Russell B (2009) CapZ dynamics are altered by endothelin-1 and phenylephrine via PIP2 and PKC-dependent mechanisms. AJP Cell 296(5): C1034–C1039

    Article  Google Scholar 

  • Heidkamp MC, Bayer AL, Scully BT, Eble DM, Samarel AM (2003) Activation of focal adhesion kinase by protein kinase C epsilon in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol 285(4): H1684–H1696

    Google Scholar 

  • Isemura M, Mita T, Satoh K, Narumi K, Motomiya M (1991) Myosin light chain kinase inhibitors ML-7 and ML-9 inhibit mouse lung carcinoma cell attachment to the fibronectin substratum. Cell Biol Int Rep 15(10): 965–972

    Article  Google Scholar 

  • Jacot JG, McCulloch AD, Omens JH (2008) Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys J 95(7): 3479–3487

    Article  Google Scholar 

  • Kajzar A, Cesa CM, Kirchgessner N, Hoffmann B, Merkel R (2008) Toward physiological conditions for cell analyses: forces of heart muscle cells suspended between elastic micropillars. Biophys J 94(5): 1854–1866

    Article  Google Scholar 

  • Kamgoué A, Ohayon J, Usson Y, Riou L, Tracqui P (2009) Quantification of cardiomyocyte contraction based on image correlation analysis. Cytometry A 75(4): 298–308

    Google Scholar 

  • Karlon WJ, Hsu PP, Li S, Chien S, McCulloch AD, Omens JH (1999) Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Ann Biomed Eng 27(6): 712–720

    Article  Google Scholar 

  • Kaunas R, Nguyen P, Usami S, Chien S (2005) Cooperative effects of Rho and mechanical stretch on stress fiber organization. Proc Natl Acad Sci USA 102(44): 15895–15900

    Article  Google Scholar 

  • Liu WF, Chen CS (2007) Cellular and multicellular form and function. Adv Drug Deliv Rev 59(13): 1319–1328

    Article  Google Scholar 

  • Miyamoto S, Del Re DP, Xiang SY, Zhao X, Florholmen G, Brown JH (2010) Revisited and revised: is RhoA always a villain in cardiac pathophysiology?. J Cardiovasc Transl Res 3(4): 330–343

    Article  Google Scholar 

  • Mochly-Rosen D, Khaner H, Lopez J (1991) Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci USA 88(9): 3997–4000

    Article  Google Scholar 

  • Moorman AF, Vermeulen JL, Koban MU, Schwartz K, Lamers WH, Boheler KR (1995) Patterns of expression of sarcoplasmic reticulum Ca(2+)-ATPase and phospholamban MRNAs during rat heart development. Circ Res 76(1): 616–625

    Article  Google Scholar 

  • Motlagh D, Hartman TJ, Desai TA, Russell B (2003) Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. J Biomed Mater Res A 67(1): 148–157

    Article  Google Scholar 

  • Motlagh D, Senyo SE, Desai TA, Russell B (2003) Microtextured substrata alter gene expression, protein localization and the shape of cardiac myocytes. Biomaterials 24(14): 2463–2476

    Article  Google Scholar 

  • Norman JJ, Collins JM, Sharma S, Russell B, Desai TA (2008) Microrods in 3D biological gels affect cell proliferation. Tissue Eng Part A 14(3): 379–390

    Article  Google Scholar 

  • Okada J, Sugiura S, Nishimura S, Hisada T (2005) Three-dimensional simulation of calcium waves and contraction in cardiomyocytes using the finite element method. Am J Physiol Cell Physiol 288(3): C510–C522

    Article  Google Scholar 

  • Otani H, Yoshioka K, Nishikawa H, Inagaki C, Nakamura T (2011) Involvement of protein kinase C and RhoA in protease-activated receptor 1-mediated F-actin reorganization and cell growth in rat cardiomyocytes. J Pharmacol Sci 115(2): 135–143

    Article  Google Scholar 

  • Pan J, Singh US, Takahashi T, Oka Y, Palm-Leis A, Herbelin BS, Baker KM (2005) PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes. J Cell Physiol 202(2): 536–553

    Article  Google Scholar 

  • Parker KK, Tan J, Chen CS, Tung L (2008) Myofibrillar architecture in engineered cardiac myocytes. Circ Res 103(4): 340–342

    Article  Google Scholar 

  • Parrag IC, Zandstra PW, Woodhouse KA (2011) Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering. Biotechnol Bioeng, doi:10.1002/bit.23353

  • Patel AA, Thakar RG, Chown M, Ayala P, Desai TA, Kumar S (2010) Biophysical mechanisms of single-cell interactions with microtopographical cues. Biomed Microdev 12(2): 287–296

    Article  Google Scholar 

  • Pedersen JA, Swartz MA (2005) Mechanobiology in the third dimension. Ann Biomed Eng 33(11): 1469–1490

    Article  Google Scholar 

  • Qin L, Huang J, Xiong C, Zhang Y, Fang J (2007) Dynamical stress characterization and energy evaluation of single cardiac myocyte actuating on flexible substrate. Biochem Biophys Res Commun 360(2): 352–356

    Article  Google Scholar 

  • Ren J, Fang CX (2005) Small guanine nucleotide-binding protein Rho and myocardial function. Acta Pharmacol Sin 26(3): 279–285

    Article  MathSciNet  Google Scholar 

  • Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88(11): 1112–1119

    Article  Google Scholar 

  • Ruwhof C, van Wamel JT, Noordzij LA, Aydin S, Harper JC, van der Laarse A (2001) Mechanical stress stimulates phospholipase C activity and intracellular calcium ion levels in neonatal rat cardiomyocytes. Cell Calcium 29(2): 73–83

    Article  Google Scholar 

  • Samarel AM (2005) Costameres, focal adhesions, and cardiomyocyte mechanotransduction. Am J Physiol Heart Circ Physiol 289(6): H2291–H2301

    Article  Google Scholar 

  • Shapira-Schweitzer K, Seliktar D (2007) Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Acta Biomater 3(1): 33–41

    Article  Google Scholar 

  • Sharp WW, Simpson DG, Borg TK, Samarel AM, Terracio L (1997) Mechanical forces regulate focal adhesion and costamere assembly in cardiac myocytes. J Physiol 273(2 Pt 2): H546–H556

    Google Scholar 

  • Simpson DG, Majeski M, Borg TK, Terracio L (1999) Regulation of cardiac myocyte protein turnover and myofibrillar structure in vitro by specific directions of stretch. Circ Res 85(10): e59–e69

    Article  Google Scholar 

  • Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C, Luzzio MJ, Cooper B, Kath JC, Roberts WG, Parsons JT (2007) Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282(20): 14845–14852

    Article  Google Scholar 

  • Smith R (2007) Plot digitizer user’s manual (version 2.4.1). http://plotdigitizer.sourceforge.net. Accessed 7 June 2010

  • Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ (1996) Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol 271(5 Pt 2): H2183–H2189

    Google Scholar 

  • Sutton MA, Cheng MQ, Peters WH, Chao YJ, McNeill SR (1986) Application of an optimized digital correlation method to planar deformation analysis. Image Vis Comput 4(1): 143–150

    Article  Google Scholar 

  • Tiburcy M, Didié M, Boy O, Christalla P, Döker S, Naito H, Karikkineth BC, El-Armouche A, Grimm M, Nose M, Eschenhagen T, Zieseniss A, Katschinksi DM, Hamdani N, Linke WA, Yin X, Mayr M, Zimmermann WH (2011) Terminal differentiation, advanced organotypic maturation, and modeling of hypertrophic growth in engineered heart tissue. Circ Res 109(10): 1105–1114

    Article  Google Scholar 

  • Torsoni AS, Marin TM, Velloso LA, Franchini KG (2005) RhoA/ROCK signaling is critical to FAK activation by cyclic stretch in cardiac myocytes. Am J Physiol Heart Circ Physiol 289(4): H1488–H1496

    Article  Google Scholar 

  • Toullec D, Pianetti P, Coste H, Bellevergue P, Grand-Perret T, Ajakane M, Baudet V, Boissin P, Boursier E, Loriolle F (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem 266(24): 15771–15781

    Google Scholar 

  • Tracqui P, Ohayon J, Boudou T (2008) Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness. J Theor Biol 255(1): 92–105

    Article  Google Scholar 

  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389(6654): 990–994

    Article  Google Scholar 

  • Zhang J, Jin G, Ma S, Meng L (2003) Application of an improved subpixel registration algorithm on digital speckle correlation measurement. Opt Laser Technol 35: 533–542

    Article  Google Scholar 

  • Zhao Y, Lim CC, Sawyer DB, Liao R, Zhang X (2007) Simultaneous orientation and cellular force measurements in adult cardiac myocytes using three-dimensional polymeric microrods. Cell Motil Cytoskeleton 64(9): 718–725

    Article  Google Scholar 

  • Zhou JJ, Bian JS, Pei JM, Wu S, Li HY, Wong TM (2002) Role of protein kinase C-epsilon in the development of kappa-opioid receptor tolerance to U50,488H in rat ventricular myocytes. Br J Pharmacol 135(7): 1675–1684

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda Russell.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (PDF 100 kb)

ESM 2 (MPEG 692 kb)

ESM 3 (MPEG 752 kb)

ESM 4 (MPEG 724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, M.W., Budyn, E., Desai, T.A. et al. Microdomain heterogeneity in 3D affects the mechanics of neonatal cardiac myocyte contraction. Biomech Model Mechanobiol 12, 95–109 (2013). https://doi.org/10.1007/s10237-012-0384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-012-0384-9

Keywords

Navigation