Advertisement

A constrained von Mises distribution to describe fiber organization in thin soft tissues

  • Cecile L. M. Gouget
  • Michael J. Girard
  • C. Ross Ethier
Original Paper

Abstract

The semi-circular von Mises distribution is widely used to describe the unimodal planar organization of fibers in thin soft tissues. However, it cannot accurately describe the isotropic subpopulation of fibers present in such tissues, and therefore an improved mathematical description is needed. We present a modified distribution, formed as a weighted mixture of the semi-circular uniform distribution and the semi-circular von Mises distribution. It is described by three parameters: β, which weights the contribution from each mixture component; k, the fiber concentration factor; and θ p , the preferred fiber orientation. This distribution was used to fit data obtained by small-angle light scattering experiments from various thin soft tissues. Initial use showed that satisfactory fits of fiber distributions could be obtained (error generally < 1%), but at the cost of non-physically meaningful values of k and β. To address this issue, an empirical constraint between the parameters k and β was introduced, resulting in a constrained 2-parameter fiber distribution. Compared to the 3-parameter distribution, the constrained 2-parameter distribution fits experimental data well (error generally < 2%) and had the advantage of producing physically meaningful parameter values. In addition, the constrained 2-parameter approach was more robust to experimental noise. The constrained 2-parameter fiber distribution can replace the semi-circular von Mises distribution to describe unimodal planar organization of fibers in thin soft tissues. Inclusion of such a function in constitutive models for finite element simulations should provide better quantitative estimates of soft tissue biomechanics under normal and pathological conditions.

Keywords

Collagen fiber organization Semi-circular Von Mises distribution Finite element implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abahussin M, Hayes S et al (2009) 3D collagen orientation study of the human cornea using X-ray diffraction and femtosecond laser technology. Invest Ophthalmol Vis Sci 50(11): 5159–5164CrossRefGoogle Scholar
  2. Aghamohammadzadeh H, Newton RH et al (2004) X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus. Structure 12(2): 249–256Google Scholar
  3. Bowes LE, Jimenez MC et al (1999) Collagen fiber orientation as quantified by small angle light scattering in wounds treated with transforming growth factor-beta2 and its neutralizing antibody. Wound Repair Regen 7(3): 179–186CrossRefGoogle Scholar
  4. Chien JCW, Chang EP (1972) Small-angle light scattering of reconstituted collagen. Macromolecules 5(5): 610–617CrossRefGoogle Scholar
  5. Cortes DH, Lake SP et al (2010) Characterizing the mechanical contribution of fiber angular distribution in connective tissue: comparison of two modeling approaches. Biomech Model Mechanobiol 9(5): 651–658CrossRefGoogle Scholar
  6. Ferdman AG, Yannas IV (1993) Scattering of light from histologic sections: a new method for the analysis of connective tissue. J Invest Dermatol 100(5): 710–716CrossRefGoogle Scholar
  7. Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  8. Fung YC (1993) Biomechanics mechanical properties of living tissues. Springer, New YorkGoogle Scholar
  9. Gasser TC, Ogden RW et al (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3: 15–35CrossRefGoogle Scholar
  10. Girard MJ, Dahlmann A et al (2010) Quantitative mapping of scleral fiber orientation in normal rat eyes. Invest Ophthalmol Vis Sci 51(5): 2128Google Scholar
  11. Girard MJ, Downs JC et al (2009) Peripapillary and posterior scleral mechanics-part II: experimental and inverse finite element characterization. J Biomech Eng 131(5): 051012CrossRefGoogle Scholar
  12. Girard MJ, Downs JC et al (2009) Peripapillary and posterior scleral mechanics-part I: development of an anisotropic hyperelastic constitutive model. J Biomech Eng 131(5): 051011CrossRefGoogle Scholar
  13. Girard MJ, Suh JK et al (2009) Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci 50(11): 5226–5237CrossRefGoogle Scholar
  14. Grytz R, Meschke G (2010) A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells. Biomech Model Mechanobiol 9(2): 225–235CrossRefGoogle Scholar
  15. Grytz R, Meschke G et al (2010) The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model MechanobiolGoogle Scholar
  16. Hayes S, Boote C et al (2007) A study of corneal thickness, shape and collagen organisation in keratoconus using videokeratography and X-ray scattering techniques. Exp Eye Res 84(3): 423–434CrossRefGoogle Scholar
  17. Joyce EM, Liao J et al (2009) Functional collagen fiber architecture of the pulmonary heart valve cusp. Ann Thorac Surg 87(4): 1240–1249CrossRefGoogle Scholar
  18. McCally RL, Farrell RA (1982) Structural implications of small-angle light scattering from cornea. Exp Eye Res 34(1): 99–113CrossRefGoogle Scholar
  19. Meek KM, Boote C (2009) The use of X-ray scattering techniques to quantify the orientation and distribution of collagen in the corneal stroma. Prog Retin Eye Res 28(5): 369–392CrossRefGoogle Scholar
  20. Nguyen TD, Boyce BL (2011) An inverse finite element method for determining the anisotropic properties of the cornea. Biomech Model Mechanobiol 10(3): 323–337CrossRefGoogle Scholar
  21. Pandolfi A, Holzapfel GA (2008) Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen fibril orientations. J Biomech Eng 130(6): 061006CrossRefGoogle Scholar
  22. Pierce DM, Trobin W et al (2010) DT-MRI based computation of collagen fiber deformation in human articular cartilage: a feasibility study. Ann Biomed Eng 38(7): 2447–2463CrossRefGoogle Scholar
  23. Price KV, Storn RM et al (2005) Differential evolution. A practical approach to global optimization. Springer, BerlinzbMATHGoogle Scholar
  24. Raghupathy R, Barocas VH (2009) closed-form structural model of planar fibrous tissue mechanics”. J Biomech 42(10): 1424–1428CrossRefGoogle Scholar
  25. Pierce DM, Trobin W et al (2010) DT-MRI based computation of collagen fiber deformation in human articular cartilage: a feasibility study. Ann Biomed Eng 38(7): 2447–2463CrossRefGoogle Scholar
  26. Sacks MS, Smith DB et al (1997) A small angle light scattering device for planar connective tissue microstructural analysis. Ann Biomed Eng 25(4): 678–689CrossRefGoogle Scholar
  27. Timmins LH, Wu Q et al (2010) Structural inhomogeneity and fiber orientation in the inner arterial media. Am J Physiol Heart Circ Physiol 298(5): H1537–H1545CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Cecile L. M. Gouget
    • 1
    • 2
  • Michael J. Girard
    • 1
  • C. Ross Ethier
    • 1
  1. 1.BioengineeringImperial College LondonLondonUK
  2. 2.Département de MécaniqueEcole PolytechniquePalaiseauFrance

Personalised recommendations