The finite cell method for bone simulations: verification and validation


Standard methods for predicting bone’s mechanical response from quantitative computer tomography (qCT) scans are mainly based on classical h-version finite element methods (FEMs). Due to the low-order polynomial approximation, the need for segmentation and the simplified approach to assign a constant material property to each element in h-FE models, these often compromise the accuracy and efficiency of h-FE solutions. Herein, a non-standard method, the finite cell method (FCM), is proposed for predicting the mechanical response of the human femur. The FCM is free of the above limitations associated with h-FEMs and is orders of magnitude more efficient, allowing its use in the setting of computational steering. This non-standard method applies a fictitious domain approach to simplify the modeling of a complex bone geometry obtained directly from a qCT scan and takes into consideration easily the heterogeneous material distribution of the various bone regions of the femur. The fundamental principles and properties of the FCM are briefly described in relation to bone analysis, providing a theoretical basis for the comparison with the p-FEM as a reference analysis and simulation method of high quality. Both p-FEM and FCM results are validated by comparison with an in vitro experiment on a fresh-frozen femur.

This is a preview of subscription content, access via your institution.


  1. Babuška I (1973) The finite element method with Lagrange multipliers. Numer Math 20: 179–192

    MATH  Article  Google Scholar 

  2. Babuška I (1973) The finite element method with penalty. Math Comput 27(122): 221–228

    MATH  Google Scholar 

  3. Baca V, Horak Z, Mikulenka P, Dzupa V (2008) Comparison of an inhomogeneous orthotropic and isotropic material models used for fe analyses. Med Eng Phys 30: 924–930

    Article  Google Scholar 

  4. Bathe K-J (2002) Finite Elemente Methoden. Springer, Berlin

    Google Scholar 

  5. Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197: 3768–3782

    MATH  Article  Google Scholar 

  6. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193: 1257–1275

    MATH  Article  Google Scholar 

  7. Galishnikova V, Dunaiski P, Pahl P (2009) Geometrically nonlinear analysis. Sun Press–Sun Media, Stellenbosch

    Google Scholar 

  8. Griebel M, Schweitzer M (2002) A particle-partition of unity method. Part V: boundary conditions. Springer, Berlin

    Google Scholar 

  9. Hansbo P (2005) Nitsche’s method for interface problems in computational mechanics. GAMM Mitteilungen 28(2): 183–206

    MathSciNet  MATH  Google Scholar 

  10. Keyak J, Falkinstein Y (2003) Comparison of in situ and in vitro CT-scan-based finite element model predictions of proximal femoral fracture load. J Med Eng Phys 25: 781–787

    Article  Google Scholar 

  11. Keyak J, Fourkas M, Meagher J, Skinner H (1993) Validation of an automated method of three-dimensional finite element modelling of bone. J Biomed Eng 15(6): 505–509

    Article  Google Scholar 

  12. Les C, Keyak J, Sover S, Taylor K, Kaneps A (1994) Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. J Orthop Res 12: 822–833

    Article  Google Scholar 

  13. Nitsche J (1970) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von TeilrSumen, die keinen Randbedingungen unterworfen sind. Abhandlung aus dem Mathematischen Seminar der UniversitSt Hamburg 36: 9–15

    Article  Google Scholar 

  14. Parvizian J, Düster A, Rank E (2007) Finite cell method—h- and p-extension for embedded domain problems in solid mechanics. Comput Mech 41: 121–133

    MathSciNet  MATH  Article  Google Scholar 

  15. Peng L, Bai J, Zeng Z, Zhou Y (2006) Comparison of isotropic and orthotropic material property assignments on femoral finite element models under two loading conditions. Med Eng Phys 28: 227–233

    Article  Google Scholar 

  16. Ruess M, Mundani R, Burgkart R, Duester A, Rank E, Westermann R (2008) Computational steering for orthopaedics. In: BIO materialien, vol 9

  17. Ruess M, Rank E (2010) From voxel-FEM to p-FEM-based analyses in bone mechanics. In: Proceedings of the 2010 EMI conference

  18. Schillinger D, Kollmannsberger S, Mundani R, Rank E (2010) The finite cell method for nonlinear problems of solid mechanics. In: Proceedings of the world conference on computational mechanics. Sidney

  19. Schileo E, Dall’Ara E, Taddei F, Malandrino A, Schotkamp T, Viceconti M (2008) An accurate estimation of bone density improves the accuracy of subject-specific finite element models. J Biomech 41: 2483–2491

    Article  Google Scholar 

  20. Schileo E, Taddei F, Malandrino A, Cristofolini L, Viceconti M (2007) Subject-specific finite element model scan accurately predict strain levels in long bones. J Biomech 40: 2982–2989

    Article  Google Scholar 

  21. Szabó B, Babuška I (1991) Finite element analysis. Wiley, New York

    Google Scholar 

  22. Szabó B, Düster A, Rank E (2004) The p-version of the finite element method. In: Encyclopedia of computational mechanics, vol 1(5). Wiley, New York, pp 119–139

  23. Taddei F, Cristofolini L, Martelli S, Gill H, Viceconti M (2006) Subject-specific finite element models of long bones: an in vitro evaluation of the overall accuracy. J Biomech 39: 2457–2467

    Article  Google Scholar 

  24. Taddei F, Pani M, Zovatto L, Tonti E, Viceconti M (2008) A new meshless approach for subject-specific strain prediction in long bones: evaluation of accuracy. Clin Biomech 23(9): 1192–1199

    Article  Google Scholar 

  25. Trabelsi N, Yosibash Z, Milgrom C (2009) Validation of subject-specific automated p-FE analysis of the proximal femur. J Biomech 42: 234–241

    Article  Google Scholar 

  26. Viceconti M, Davinelli M, Taddei F, Cappello A (2003) Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J Biomech 37: 1597–1605

    Article  Google Scholar 

  27. Yang Z, Dick C, Düster A, Ruess M, Westermann R, Rank E (2010) Finite cell method with fast integration—an efficient and accurate analysis method for CT/MRI derived models. In: Proceedings of the ECCM 2010

  28. Yosibash Z, Padan R, Joscowicz L, Milgrom C (2007) A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. ASME J Biomech Eng 129(3): 297–309

    Article  Google Scholar 

  29. Yosibash Z, Trabelsi N, Milgrom C (2007) Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. J Biomech 40: 3688–3699

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Martin Ruess.

Additional information

Zohar Yosibash: Research performed while on Sabbatical leave at the Chair for Computation in Engineering at the Technische Universität München.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ruess, M., Tal, D., Trabelsi, N. et al. The finite cell method for bone simulations: verification and validation. Biomech Model Mechanobiol 11, 425–437 (2012).

Download citation


  • High-order FEM
  • Ficitious domain method
  • Bone mechanics
  • Human femur