Skip to main content

Advertisement

Log in

3D characterization of bone strains in the rat tibia loading model

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Bone strain is considered one of the factors inducing bone tissue response to loading. Nevertheless, where animal studies can provide detailed data on bone response, they only offer limited information on experimental bone strains. Including micro-CT-based finite element (micro FE) models in the analysis represents a potent methodology for quantifying strains in bone. Therefore, the main objective of this study was to develop and validate specimen-specific micro FE models for the assessment of bone strains in the rat tibia compression model. Eight rat limbs were subjected to axial compression loading; strain at the medio-proximal site of the tibiae was measured by means of strain gauges. Specimen-specific micro FE models were created and analyzed. Repeated measurements on each limb indicated that the effect of limb positioning was small (COV = 6.45 ± 2.27 %). Instead, the difference in the measured strains between the animals was high (54.2%). The computational strains calculated at the strain gauge site highly correlated to the measured strains (R 2 = 0.95). Maximum peak strains calculated at exactly 25% of the tibia length for all specimens were equal to 435.11 ± 77.88 microstrains (COV = 17.19%). In conclusion, we showed that strain gauge measurements are very sensitive to the exact strain gauge location on the bone; hence, the use of strain gauge data only is not recommended for studies that address at identifying reliable relationships between tissue response and local strains. Instead, specimen-specific micro FE models of rat tibiae provide accurate estimates of tissue-level strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams M (2002) Evaluation of three unstructured multigrid methods on 3D finite element problems in solid mechanics. Int J Numer Meth Eng 55: 519–534

    Article  MATH  Google Scholar 

  • Akhter MP, Raab DM, Turner CH, Kimmel DB, Recker RR (1992) Characterization of in vivo strain in the rat tibia during external application of a four-point bending load. J Biomech 25(10): 1241–1246

    Article  Google Scholar 

  • Arbenz P, van Lenthe GH, Mennel U, Müller R, Sala M (2008) A scalable multi-level preconditioner for matrix-free μ-finite element analysis of human bone structures. Int J Numer Meth Eng 73: 927–947

    Article  MATH  Google Scholar 

  • Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in Rodents using micro-computed tomography. J Bone Miner Res 25(7): 1468–1486

    Article  Google Scholar 

  • Boyd SK, Muller R, Zernicke RF (2002) Mechanical and architectural bone adaptation in early stage experimental osteoarthritis. J Bone Miner Res 17(4): 687–694

    Article  Google Scholar 

  • Chennimalai KN, Dantzig JA, Jasiuk IM, Robling AG, Turner CH (2010) Numerical modeling of long bone adaptation due to mechanical loading: correlation with experiments. Ann Biomed Eng 38(3): 594–604

    Article  Google Scholar 

  • Frost HM (2003) Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275(2): 1081–1101

    Article  MathSciNet  Google Scholar 

  • Hsieh YF, Robling AG, Ambrosius WT, Burr DB, Turner CH (2001) Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location. J Bone Miner Res 16(12): 2291–2297

    Article  Google Scholar 

  • Hsieh YF, Wang T, Turner CH (1999) Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation. Bone 25: 379–382

    Article  Google Scholar 

  • Huang TH, Lin SC, Chang FL, Hsieh SS, Liu SH, Yang RS (2003) Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol 95(1): 300–307

    Google Scholar 

  • Kotha SP, Hsieh YF, Strigel RM, Muller R, Silva MJ (2004) Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading. J Biomech 37(4): 541–548

    Article  Google Scholar 

  • Kuruvilla SJ, Fox SD, Cullen DM, Akhter MP (2008) Site specific bone adaptation response to mechanical loading. J Musculoskelet Neuronal Interact 8(1): 71–78

    Google Scholar 

  • LaMothe JM, Hamilton NH, Zernicke RF (2005) Strain rate influences periosteal adaptation in mature bone. Med Eng Phys 27: 277–284

    Article  Google Scholar 

  • LaMothe JM, Zernicke RF (2004) Rest insertion combined with high-frequency loading enhances osteogenesis. J Appl Physiol 96: 1788–1793

    Article  Google Scholar 

  • Robling AG, Turner CH (2002) Mechanotransduction in bone: genetic effects on mechanosensitivity in mice. Bone 31(5): 562–569

    Article  Google Scholar 

  • Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66(3): 397–402

    Google Scholar 

  • Schriefer JL, Robling AG, Warden SJ, Fournier AJ, Mason JJ, Turner CH (2005a) A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech 38(3): 467–475

    Article  Google Scholar 

  • Schriefer JL, Warden SJ, Saxon LK, Robling AG, Turner CH (2005b) Cellular accommodation and the response of bone to mechanical loading. J Biomech 38(9): 1838–1845

    Article  Google Scholar 

  • Stadelmann VA, Hocke J, Verhelle J, Forster V, Merlini F, Terrier A, Pioletti DP (2009) 3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements. Comput Methods Biomech Biomed Eng 12(1): 95–100

    Article  Google Scholar 

  • Torcasio A, van Oosterwyck H, van Lenthe GH (2008) The systematic errors in tissue modulus of murine bones when estimated from three-point bending. J Biomech 41: S14

    Article  Google Scholar 

  • Turner CH, Forwood MR, Otter MW (1994) Mechanotransduction in bone: do bone cells act as sensors of fluid flow. FASEB J 8(11): 875–878

    Google Scholar 

  • Uthgenannt BA, Silva MJ (2007) Use of the rat forelimb compression model to create discrete levels of bone damage in vivo. J Biomech 40(2): 317–324

    Article  Google Scholar 

  • van Lenthe GH, Kohler T, Voide R, Donahue LR, Müller R (2004) Functional phenomics in bone: high-throughput assessment of genetic differences in murine inbred strains. J Bone Miner Res 19((1): S390

    Google Scholar 

  • van Lenthe GH, Voide R, Boyd SK, Muller R (2008) Tissue modulus calculated from beam theory is biased by bone size and geometry: implications for the use of three-point bending tests to determine bone tissue modulus. Bone 43(4): 717–723

    Article  Google Scholar 

  • van Lenthe GH, Muller R (2006) Prediction of failure load using micro-finite element analysis models: toward in vivo strength assessment. Drug Discov Today Technol 3: 221–229

    Article  Google Scholar 

  • van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1): 69–81

    Article  Google Scholar 

  • Voide R, van Lenthe GH, Muller R (2008) Femoral stiffness and strength critically depend on loading angle: a parametric study in a mouse-inbred strain. Biomed Tech (Berl) 53(3): 122–129

    Article  Google Scholar 

  • Xie L, Jacobson JM, Choi ES, Busa B, Donahue LR, Miller LM, Rubin CT, Judex S (2006) Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39: 1059–1066

    Article  Google Scholar 

  • Zhang P, Tanaka SM, Jiang H, Su M, Yokota H (2006) Diaphyseal bone formation in murine tibiae in response to knee loading. J Appl Physiol 100: 1452–1459

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Harry van Lenthe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torcasio, A., Zhang, X., Duyck, J. et al. 3D characterization of bone strains in the rat tibia loading model. Biomech Model Mechanobiol 11, 403–410 (2012). https://doi.org/10.1007/s10237-011-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-011-0320-4

Keywords

Navigation