Advertisement

A multiscale mechanobiological modelling framework using agent-based models and finite element analysis: application to vascular tissue engineering

  • Houman Zahedmanesh
  • Caitríona Lally
Original Paper

Abstract

Computational models of mechanobiological systems have been widely used to provide insight into these systems and also to predict their behaviour. In this context, vascular tissue engineering benefits from further attention given the challenges involved in developing functional low calibre vascular grafts with long-term patency. In this study, a novel multiscale mechanobiological modelling framework is presented, which takes advantage of lattice-free agent-based models coupled with the finite element method to investigate the dynamics of VSMC growth in vascular tissue engineering scaffolds. The results illustrate the ability of the mechanobiological modelling approach to capture complex multiscale mechanobiological phenomena. Specifically, the framework enabled the study of the influence of scaffold compliance and loading regime in regulating the growth of VSMCs in vascular scaffolds and their role in development of intimal hyperplasia (IH). The model demonstrates that low scaffold compliance compared to host arteries leads to increased luminal ingrowth and IH development. In addition, culture of a tissue-engineered blood vessel under a pulsatile luminal pressure reduced luminal ingrowth and enhanced collagen synthesis within the scaffold compared to non-pulsatile culture. The mechanobiological framework presented provides a robust platform for testing hypotheses in vascular tissue engineering and lends itself to use as an optimisation design tool.

Keywords

Agent-based model (ABM) Vascular tissue engineering Vascular smooth muscle cell (VSMC) Mechanobiology Finite element method (FEM) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abaqus analysis user’s manual (v6.8), section 21.7.2, PermeabilityGoogle Scholar
  2. Andreykiv A, van Keulen F, Prendergast PJ (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7: 443–461. doi: 10.1007/s10237-007-0108-8 CrossRefGoogle Scholar
  3. Ausk BJ, Gross TS, Srinivasan S (2006) An agent based model for real-time signaling induced in osteocytic networks by mechanical stimuli. J Bimech 39: 2638–2646. doi: 10.1016/j.jbiomech.2005.08.023 CrossRefGoogle Scholar
  4. Ayyalasomayajula A, Vande Geest JP, Simon BR (2010) Porohyperelastic finite element modeling of abdominal aortic aneurysms. J Biomech Eng 132: 104502–104510. doi: 10.1115/1.4002370 CrossRefGoogle Scholar
  5. Baily AM, Thorne BC, Peirce SM (2007) Multi-cell agent based simulation of the microvasculature to study the dynamics of circulating inflammatory cell trafficking. Ann Biomed Eng 35(6): 916–936. doi: 10.1007/s10439-007-9266-1 CrossRefGoogle Scholar
  6. Boyle CJ, Lennon AB, Early M, Kelly DJ, Lally C, Prendergast PJ (2010) Computational simulation methodologies for mechanobiological modelling: a cell-centered approach to neointima development in stents. Phil Trans R Soc A 368: 2919–2935. doi: 10.1098/rsta.2010.0071 Google Scholar
  7. Buijs JOD, Lu L, Jorgensen SM, Dragomir-Daescu D, Yaszemski MJ, Ritman EL (2009) Solute transport in cyclically deformed porous tissue scaffolds with controlled pore cross-sectional geometries. Tissue Eng part A 15(8): 1989–1999. doi: 10.1089/ten.tea.2008.0382 CrossRefGoogle Scholar
  8. Byrne DP, Lacroix D, Planell JA, Kelly , Prendergast PJ (2007) Simulation of tissue differentiation in a scaffold as a function of porosity, Young’s modulus and dissolution rate: Application of mechanobiological models in tissue engineering. Biomaterials 28: 5544–5554. doi: 10.1016/j.biomaterials.2007.09.003 CrossRefGoogle Scholar
  9. Byrne H, Drasdo D (2009) Individual-based and continuum models of growing cell populations: a comparison. J Math Biol 58: 657–687. doi: 10.1007/s00285-008-0212-0 MathSciNetCrossRefGoogle Scholar
  10. Caiazzo A, Evans D, Falcone J-L, Hegewald J, Lorenz E, Stahl B, Wang D, Bernsdorf J, Chopard B, Gunn J, Hose R, Krafczyk M, Lawford P, Smallwood R, Walker D, Hoekstra AG (2009) Towards a complex automata multiscale model of in-stent restenosis. Comput Sci ICCS 5544: 705–714. doi: 10.1007/978-3-642-01970-8_70 Google Scholar
  11. Cartmell SH, Porter BD, Garcia AJ, Guldburg RE (2003) Effects of medium perfusion rate on cell seeded three dimensional bone constructs in vitro. Tissue Eng 9(6): 1197–1203. doi: 10.1089/10763270360728107 CrossRefGoogle Scholar
  12. Chapman GB, Durante W, Hellums JD, Schafer AI (2000) Physiological cyclic stretch causes cell cycle arrest in cultured vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 278: H748–H754Google Scholar
  13. Coletti F, Macchietto S, Elvassore N (2006) Mathematical modeling of three-dimensional cell cultures in perfusion bioreactors. Eng Chem Res 45(24): 8158–8169. doi: 10.1016/S1570-7946(06)80292-0 CrossRefGoogle Scholar
  14. Colombo A (2009) The role of altered cyclic strain patterns on proliferation and apoptosis of vascular smooth muscle cells—implications for in-stent restenosis. PhD thesis, Dublin City University (http://doras.dcu.ie/14917/)
  15. DiMilla PA, Stone JA, Quinn JA, Albelda SM, Lauffenburger DA (1993) Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J Cell Biol 122: 729–737CrossRefGoogle Scholar
  16. Durante W, Liao L, Reyna SV, Peyton KJ, Schafer AL (2000) Physiological cyclic stretch directs L-arginine transport and metabolism to collagen synthesis in vascular smooth muscle. FASEB J 14(12): 1775–1783CrossRefGoogle Scholar
  17. Feenstra PH, Taylor CA (2009) Drug transport in artery walls: a sequential porohyperelastic-transport approach. Comput Methods Biomech Biomed Eng 12: 263–276. doi: 10.1080/10255840802459396 CrossRefGoogle Scholar
  18. Geris L, Schugart R, Van Oosterwyck H (2010) In silico design of treatment strategies in wound healing and bone fracture healing. Phil Trans R Soc A 368(1920): 2683–2706. doi: 10.1098/rsta.2010.0056 CrossRefGoogle Scholar
  19. Geris L, Vander Sloten J, Van Oosterwyck H (2010) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Modelling Mechanobiol 9(6): 24–713. doi: 10.1007/s10237-010-0208-8 Google Scholar
  20. Geris L, Liedekerke PV, Smeets B, Tijskens E, Ramon H (2010) A cell based modelling framework for skeletal tissue engineering applications. J Biomech 43: 887–892. doi: 10.1016/j.jbiomech.2009.11.010 CrossRefGoogle Scholar
  21. Gerlee P, Andersona ARA (2008) hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolitic phenotype. J Theor Biol 250: 705–722. doi: 10.1016/j.jtbi.2007.10.038 CrossRefGoogle Scholar
  22. Greisler HP, Joyce KA, Kim DU, Pham SM, Berceli SA, Borovetz HS (2004) Spatial and temporal changes in compliance following implantation of bioresorbable vascular grafts. J Biomed Mater Res 26: 1449–1461. doi: 10.1002/jbm.820261105 CrossRefGoogle Scholar
  23. Guo Z, Sloot PMA, Tay JC (2008) A hybrid agent based approach for modeling microbiological systems. J Theor Biol 255: 163–175. doi: 10.1016/j.jtbi.2008.08.008 CrossRefGoogle Scholar
  24. Hahn Ms, Mchale Mk, Wang E, Schmedlen Rh, West JI (2007) Physiologic pulsatile flow bioreactor conditioning of poly(ethyleneglycol)-based tissue engineered vascular grafts. Ann Biomed Eng 35(2): 190–200. doi: 10.1007/s10439-006-9099-3 CrossRefGoogle Scholar
  25. Halka AT, Turner NJ, Carter A, Ghosh J, Murphy MO, Kirton JP, Kielty CM, Walker MG (2008) The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovasc Pathol 17: 98–102. doi: 10.1016/j.carpath.2007.03.001 CrossRefGoogle Scholar
  26. Hoffmann R, Mintz GS (2000) Coronary in-stent restenosis—predictors, treatment and prevention. Eur Heart J 21: 1739–1749. doi: 10.1053/euhj.2000.2153 CrossRefGoogle Scholar
  27. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circul Physiol 289: H2048–H2058. doi: 10.1152/ajpheart.00934.2004 CrossRefGoogle Scholar
  28. Hwang M, Garbey M, Berceli SA, Tran-Son-Tay R (2009) Rule based simulation of multi-cellular biological systems-a review of modelling techniques. Cell Mol Bioeng 2(3): 285–294. doi: 10.1007/s12195-009-0078-2 CrossRefGoogle Scholar
  29. Issaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252(2): 230–246. doi: 10.1016/j.jtbi.2008.01.030 CrossRefGoogle Scholar
  30. Jeong SI, Kwon JH, Lim JI, Cho SW, Jung YM, Sung WJ, Kim SH, Kim YH, Lee YM, Kim BS, Choi CY, Kim SJ (2005) Mechano-active tissue engineering of vascular smooth muscle using pulsatile perfusion bioreactors and elastic PLCL scaffolds. Biomaterials 26: 1405–1411. doi: 10.1016/j.biomaterials.2004.04.036 CrossRefGoogle Scholar
  31. Jungreuthmayer C, Donahue SW, Jaasma MJ, Al-Munajjed AA, Zanghellini J, Kelly DJ, O’Brien FJ (2009) A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors. Tissue Eng Part A 15(5): 1141–1149. doi: 10.1089/ten.tea.2008.0204 CrossRefGoogle Scholar
  32. Kona S, Chellamuthu P, Xu H, Hills SR, Nguyen KT (2009) Effects of cyclic strain and growth factors on vascular smooth muscle cell responses. Open Biomed Eng J 3: 28–38. doi: 10.2174/1874120700903010028 CrossRefGoogle Scholar
  33. Koshiba N, Ando J, Chen X, Hisada T (2007) Multiphysics simulation of blood flow and LDL transport in a porohyperelastic arterial wall model. J Biomech Eng 129(3): 374–385CrossRefGoogle Scholar
  34. Kozai T, Eto M, Yang Z, Shimokawa H, LÜscher TF (2005) Statins prevent pulsatile stretch-induced proliferation of human saphenous vein smooth muscle cells via inhibition of Rho/Rho-kinase pathway. Cardiovasc Res 68: 475–482. doi: 10.1016/j.cardiores.2005.07.002 CrossRefGoogle Scholar
  35. Lemson MS, Tordoir JHM, Daemen MJAP, Kristslaar PJEHM (2000) Intimal hyperplasia in vascular grafts. Eur J Endovascular Surg 19: 336–350. doi: 10.1053/ejvs.1999.1040 CrossRefGoogle Scholar
  36. Li NYK, Verdolini K, Clermont G, Mi Q, Rubinstein EN, Hebda PA, Vodovotz Y (2008) A patient-specific in silico model of inflammation and healing tested in acute vocal fold injury. PLoS ONE 3(7): e2789. doi: 10.1371/journal.pone.0002789 CrossRefGoogle Scholar
  37. London GM, Marchais SJ, Guerin AP, Pannier B (2004) Arterial stiffness: pathophysiology and clinical impact. Clin Exp Hypertens 26(7–8): 689–699CrossRefGoogle Scholar
  38. Merks RMH, Perryn ED, shirinfard A, Glazier J (2008) Contact-inhibited chemotaxis in De Novo and sprouting blood vessel growth. PLoS Comput Biol 4(9): e1000163. doi: 10.1371/journal.pcbi.1000163 CrossRefGoogle Scholar
  39. Morrow D, Sweeney C, Birney YA, Cummins PM, Walls D, Redmond EM, Cahill PA (2005) Cyclic strain inhibits notch receptor signaling in vascular smooth muscle cells in vitro. Circul Res 96: 567–575. doi: 10.1161/01.RES.0000159182.98874.43 CrossRefGoogle Scholar
  40. Nigg BM, Herzog W (2001) Biomechanics of the musculo-skeletal system. Wiley, AmsterdamGoogle Scholar
  41. Numaguchi K, Eguchi S, Yamakawa T, Motley ED, Inagami T (1999) Mechanotransduction of rat aortic vascular smooth muscle cells requires RhoA and intact actin filaments. Circul Res 85: 5–11Google Scholar
  42. Ogden RW (1972) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A Math Phys Sci 326: 565–584. doi: 10.1098/rspa.1972.0026 zbMATHCrossRefGoogle Scholar
  43. Pappalardo F, Cincotti A, Motta A, Pennisi M (2009) Agent based modelling of atheresclerosis: a concrete help in personalized treatments. Lect Notes Comput Sci 5755: 386–396. doi: 10.1007/978-3-642-04020-7_41 CrossRefGoogle Scholar
  44. Peirce SM, Van Gieson EJ, Skalak, T (2004) Multicellular simulation predicts microvascular patterning and in silico tissue assembly. FASEB J, doi: 10.1096/fj.03-0933fje
  45. Roy S, Silacci P, Stergiopulos N (2005) Biomechanical proprieties of decellularized porcine common carotid arteries. Am J Physiol Heart Circ Physiol 289: H1567–H1576. doi: 10.1152/ajpheart.00564.2004 CrossRefGoogle Scholar
  46. Salacinski HJ, Goldner S, Giudiceandrea A, Hamilton G, Seifalian AM, Edwards A, Carson RJ (2001) The mechanical behavior of vascular grafts: a review. J Biomater Appl 15: 241–278. doi: 10.1106/NA5T-J57A-JTDD-FD04 CrossRefGoogle Scholar
  47. Seliktar D, Nerem RM, Galis ZS (2003) Mechanical strain-stimulated remodeling of tissue-engineered blood vessel constructs. Tissue Eng 9(4): 657–666. doi: 10.1089/107632703768247359 CrossRefGoogle Scholar
  48. Song Y, Wennink JWH, Kamphuis MMJ, Sterk LMT, Vermes I, Poot AA, Feijen J, Grijpma DW (2010) Dynamic culturing of smooth muscle cells in tubular poly (trimethylene carbonate) scaffolds for vascular tissue engineering. Tissue Eng Part A (in press). doi: 10.1089/ten.tea.2009.0805
  49. Stankus JJ, Guan J, Fujimoto K, Wagner WR (2006) Microintegrating smooth muscle cells in a biodegradable elastomeric fibre matrix. Biomaterials 27(5): 735–744. doi: 10.1016/j.biomaterials.2005.06.020 CrossRefGoogle Scholar
  50. Stops AJF, erati KB, Browne M, O’Brien FJ, McHugh PE (2010) A prediction of cell differentiation and proliefartion within a collagen-glycosaminoglycan scaffold subjected to mechanical strain and perfusive fluid flow. J Biomech 43: 618–626. doi: 10.1016/j.jbiomech.2009.10.037 CrossRefGoogle Scholar
  51. Subbaraj K, Ghista DN, Viviani GR (1989) Presurgical finite element simulation of scoliosis correction. J Biomed Eng 11(1): 9–18. doi: 10.1016/0141-5425(89)90159-3 CrossRefGoogle Scholar
  52. Thorne BC, Bailey AM, Peirce SM (2007) Combining experiments with multi-cell agent based modeling to study biological tissue patterning, briefings in bioinformatics. Brief Bioinform 8(4): 245–257. doi: 10.1093/bib/bbm024 CrossRefGoogle Scholar
  53. Viceconti M, (2010) What is a model? A tentative taxonomy of biomedical models. In: Proceedings of the European society of biomechanics. Edinburgh, UKGoogle Scholar
  54. Volkmer E, Drosse I, Otto S, Stangelmayer A, Stengele M, Kallukalam BC, Mutschler W, Schieker M (2008) Hypoxia in static and dynamic 3D culture systems for tissue engineering of bone. Tissue Eng Part A 14(8): 1331–1340. doi: 10.1089/ten.tea.2007.0231 CrossRefGoogle Scholar
  55. Walker DC, Hill G, Wood SM, Smallwood RH, Southgate J (2004) Agent based compuatationl modelling of wounded epithelial cell monolayers. IEEE Trans Nanobiosci 3(3): 153–163CrossRefGoogle Scholar
  56. Wang JH-C, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomechan Model Mechanobiol 5: 1–16. doi: 10.1007/s10237-005-0012-z CrossRefGoogle Scholar
  57. Watton PN, Selimovic A, Raberger NB, Huang P, Holzapfel GA, Ventikos Y (2010) Modelling evolution and the evolving mechanical environment of saccular cerebral aneurysms. Biomech Modeling Mechanobiol 10: 109–132. doi: 10.1007/s10237-010-0221-y CrossRefGoogle Scholar
  58. Xu ZC, Zhang WJ, Li H, Cui L, Cen L, Zhou GD, Liu W, Cao Y (2008) Engineering of an elastic large muscular vessel wall with pulsatile stimulation in bioreactor. Biomaterials 29: 1464–1472. doi: 10.1016/j.biomaterials.2007.11.037 CrossRefGoogle Scholar
  59. Zahedmanesh H, Lally C (2009) Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med Biol Eng Compt 47(4): 385–393. doi: 10.1007/s11517-009-0432-5 CrossRefGoogle Scholar
  60. Zahedmanesh H, Kelly DJ, Lally C (2010) Simulation of a balloon expandable stent in a realistic coronary artery—Determination of the optimum modelling strategy. J Biomech 43(11): 2126–2132. doi: 10.1016/j.jbiomech.2010.03.050 CrossRefGoogle Scholar
  61. Zahedmanesh H, Mackle J, Selborn A, Bodin A, Drotz C, Gatenholm P, Lally C (2011) Bacterial cellulose as a potential vascular graft: mechanical characterisation and constitutive model development. J Biomed Material Res-Part B 97(1): 105–113. doi: 10.1002/jbm.b.31791 CrossRefGoogle Scholar
  62. Zilla P, Bezuidenhout D, Human P (2007) Prosthetic vascular grafts: wrong models, wrong questions and no healing. Biomaterials 28: 5009–5027. doi: 10.1016/j.biomaterials.2007.07.017 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Mechanical and Manufacturing EngineeringDublin City UniversityGlasnevin, Dublin 9Ireland

Personalised recommendations