Skip to main content
Log in

The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

During secondary bone healing, different tissue types are formed within the fracture callus depending on the local mechanical and biological environment. Our aim was to understand the temporal succession of these tissue patterns for a normal bone healing progression by means of a basic mechanobiological model. The experimental data stemmed from an extensive, previously published animal experiment on sheep with a 3 mm tibial osteotomy. Using recent experimental data, the development of the hard callus was modelled as a porous material with increasing stiffness and decreasing porosity. A basic phenomenological model was employed with a small number of simulation parameters, which allowed comprehensive parameter studies. The model distinguished between the formation of new bone via endochondral and intramembranous ossification. To evaluate the outcome of the computer simulations, the tissue images of the simulations were compared with experimentally derived tissue images for a normal healing progression in sheep. Parameter studies of the threshold values for the regulation of tissue formation were performed, and the source of the biological stimulation (comprising e.g. stem cells) was varied. It was found that the formation of the hard callus could be reproduced in silico for a wide range of threshold values. However, the bridging of the fracture gap by cartilage on the periosteal side was observed only (i) for a rather specific choice of the threshold values for tissue differentiation and (ii) when assuming a strong source of biological stimulation at the periosteum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ament C, Hofer EP (2000) A fuzzy logic model of fracture healing. J Biomech 33(8): 961–968

    Article  Google Scholar 

  • Bastian P, Blatt M, Dedner A, Engwer C, Klofkorn R, Kornhuber R, Ohlberger M, Sander O (2008) A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE. Computing 82(2–3): 121–138

    Article  MATH  MathSciNet  Google Scholar 

  • Rockwood, CA (eds)Buckwalter JA (1996) Rockwood and Green’s fractures in adults. Lippincott-Raven, Philadelphia, pp 261–304

  • Carter DR, Beaupre GS, Giori NJ, Helms JA (1998) Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 355: S41–S55

    Article  Google Scholar 

  • Checa S, Prendergast PJ (2009) A Mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37(1): 129–145

    Article  Google Scholar 

  • Chen G, Niemeyer F, Wehner T, Simon U, Schuetz MA, Pearcy MJ, Claes LE (2009) Simulation of the nutrient supply in fracture healing . J Biomech 42(15): 2575–2583

    Article  Google Scholar 

  • Claes LE, Heigele CA (1999) Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 32(3): 255–266

    Article  Google Scholar 

  • Claes LE, Heigele CA, Neidlinger-Wilke C, Kaspar D, Seidl W, Margevicius KJ, Augat P (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355: S132–S147

    Article  Google Scholar 

  • Claes LE, Ito K (2004) Biomechanics of fracture fixation and fracture healing. In: Mow VC, Huiskes R (eds) Basic orthopaedic biomechanics and mechano-biology. Lippincott Williams & Wilkins, London

    Google Scholar 

  • Colnot C (2009) Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24(2): 274–282

    Article  Google Scholar 

  • Cruess RL, Dumont J (1975) Fracture healing. Can J Surg 18(5): 403

    Google Scholar 

  • Duda GN, Eckert-Hubner K, Sokiranski R, Kreutner A, Miller R, Claes L (1998) Analysis of inter-fragmentary movement as a function of musculoskeletal loading conditions in sheep. J Biomech 31(3): 201–210

    Article  Google Scholar 

  • Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat R 355: S7–S21

    Article  Google Scholar 

  • Epari DR, Schell H, Bail HJ, Duda GN (2006) Instability prolongs the chondral phase during bone healing in sheep. Bone 38(6): 864–870

    Article  Google Scholar 

  • Epari DR, Taylor WR et al (2006) Mechanical conditions in the initial phase of bone healing. Clin Biomech 21(6): 646–655

    Article  Google Scholar 

  • Gardner TN, Mishra S (2003) The biomechanical environment of a bone fracture and its influence upon the morphology of healing. Med Eng Phys 25(6): 455–464

    Article  Google Scholar 

  • Geris L, Gerisch A, Sloten JV, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 251(1): 137–158

    Article  Google Scholar 

  • Geris L, Sloten JV, Van Oosterwyck H (2009) In silico biology of bone modelling and remodelling: regeneration. Philos T R Soc A 367(1895): 2031–2053

    Article  Google Scholar 

  • Gerstenfeld LC, Alkhiary YM, Krall EA, Nicholls FH, Stapleton SN, Fitch JL, Bauer M, Kayal R, Graves DT, Jepsen KJ, Einhorn T (2006) Three-dimensional reconstruction of fracture callus morphogenesis. J Histochem Cytochem 54(11): 1215–1228

    Article  Google Scholar 

  • Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88(5): 873–884

    Article  Google Scholar 

  • Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture heating: the diamond concept. Injury 38: S3–S6

    Article  Google Scholar 

  • Gibson LJ, Ahsby MF (1999) Cellular solids, structure and properties, 2nd edn. Cambridge University Press, Cambridge, p 510

    Google Scholar 

  • Goodship A (2005) Mechanical modulation of fracture healing and implications for skeletal tissue engineering. Engineered bone. Landes Bioscience, Georgetown, pp 72–88

    Google Scholar 

  • Hori RY, Lewis JL (1982) Mechanical-properties of the fibrous tissue found at the bone-cement interface following total joint replacement. J Biomed Mater Res 16(6): 911–927

    Article  Google Scholar 

  • Isaksson H, Wilson W, Donkelaar CC, van Huiskes R, Ito K (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39(8): 1507–1516

    Article  Google Scholar 

  • Isaksson H, Van Donkelaar CC et al (2006) Corroboration of mechanoregulatory algorithms for tissue differentiation during fracture healing: comparison with in vivo results. J Orthop Res 24(5): 898–907

    Article  Google Scholar 

  • Kasper G, Glaeser JD, Geissler S, Ode A, Tuischer J, Matziolis G, Perka C, Duda GN (2007) Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells 25(8): 1985–1994

    Article  Google Scholar 

  • Kasper G, Mao L, Geissler S, Draycheva A, Trippens J, Kuhnisch J, Tschirschmann M, Kaspar K, Perka C, Duda GN, Klose J (2009) Insights into mesenchymal stem cell aging: involvement of antioxidant defense and actin cytoskeleton. Stem Cells 27(6): 1288–1297

    Article  Google Scholar 

  • Klein P, Schell H, Streitparth F, Heller M, Kassi JP, Kandziora F, Bragulla H, Haas NP, Duda GN (2003) The initial phase of fracture healing is specifically sensitive to mechanical conditions. J Orthop Res 21(4): 662–669

    Article  Google Scholar 

  • Kuiper JH, Richardson JB, Ashton BA (2000) Computer simulation to study the effect of fracture site movement on tissue formation and fracture stiffness restoration. ECCOMAS 2000, Barcelona

    Google Scholar 

  • Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35(9): 1163–1171

    Article  Google Scholar 

  • Lienau J, Schmidt-Bleek K, Peters A, Haschke F, Duda GN, Perka C, Bail HJ, Schutze N, Jakob F, Schell H (2009) Differential regulation of blood vessel formation between standard and delayed bone healing. J Orthop Res 27(9): 1133–1140

    Article  Google Scholar 

  • Malizos KN, Papatheodorou LK (2005) The heating potential of the periosteum molecular aspects. Injury 36: 13–19

    Article  Google Scholar 

  • Manjubala I, Liu Y, Epari DR, Roschger P, Schell H, Fratzl P, Duda GN (2009) Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone 45(2): 185–192

    Article  Google Scholar 

  • Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus-density relationships depend on anatomic site. J Biomech 36(7): 897–904

    Article  Google Scholar 

  • Pauwels F (1960) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung im Stützgewebe. Z Anat Entwicklungsgeschichte 121: 478–515

    Article  Google Scholar 

  • Perren SM, Cordey J (1980) The concept of interfragmentary strain. In: Uhthoff HK (eds) Current concepts of internal fixation of fractures. Springer, Berlin, pp 67–77

    Google Scholar 

  • Prendergast PJ, Huiskes R, Soballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30(6): 539–548

    Article  Google Scholar 

  • Schell H, Epari DR, Kassi JP, Bragulla H, Bail HJ, Duda GN (2005) The course of bone healing is influenced by the initial shear fixation stability. J Orthop Res 23(5): 1022–1028

    Article  Google Scholar 

  • Schell H, Thompson MS, Bail HJ, Hoffmann JE, Schill A, Duda GN, Lienau J (2008) Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech 41(14): 3066–3072

    Article  Google Scholar 

  • Lieberman, JR, Friedlaender, GE (eds)Sfeir C, Ho C, Doll BA, Azari K, Hollinger JO (2005) Bone regeneration and repair. Humana Press Inc, Totowa, pp 21–43

    Chapter  Google Scholar 

  • Vetter A, Epari DR, Seidel R, Schell H, Fratzl P, Duda GN, Weinkamer R (2010) Temporal tissue patterns in bone healing of sheep. J Orthop Res 28(11): 1440–1447

    Article  Google Scholar 

  • Vetter A, Liu Y, Witt F, Manjubala I, Fratzl P, Duda GN, Weinkamer R (2011) The mechanical heterogeneity of the hard callus influences the local strains during bone healing. J Biomech 44: 517–523

    Article  Google Scholar 

  • Willenegger H, Perren SM, Schenk R (1971) Primary and secondary healing of bone fractures. Chirurg 42(6): 241

    Google Scholar 

  • Witt F, Petersen A, Seidel R, Vetter A, Weinkamer R, Duda GN (2010) Two mechanobiological rules allow to drive endochondral ossification during bone healing: proposed mechanobiological mechanism and validation against in vivo histological data. Ann Biomed Eng (under review)

  • Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80A(12): 1745–1757

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Weinkamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vetter, A., Witt, F., Sander, O. et al. The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol 11, 147–160 (2012). https://doi.org/10.1007/s10237-011-0299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-011-0299-x

Keywords

Navigation