Skip to main content

Predicting isometric force from muscular activation using a physiologically inspired model

Abstract

Motivated by biochemical processes during muscular contraction, a model is constructed that predicts isometric force from surface electromyographic signals (sEMG). The model is experimentally validated and then it is used to predict contractions from sEMG data. The calculated simulations reveal a highly non-linear relationship between sEMG and isometric force.

This is a preview of subscription content, access via your institution.

References

  1. Buchanan TS, Lloyd DG, Manal K, Besier TF (2004) Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command. J Appl Biomech 20(4): 367–395

    Google Scholar 

  2. Cholewicki J, McGill SM (1996) Mechanical stability of the in vivo lumbar spine: Implications for injury and chronic low back pain. Clin Biomech (Bristol, Avon) 11(1): 1–15

    Article  Google Scholar 

  3. Erdemir A, McLean S, Herzog W, van den Bogert AJ (2007) Model-based estimation of muscle forces exerted during movements. Clin Biomech (Bristol, Avon) 22(2): 131–154

    Article  Google Scholar 

  4. Gottlieb GL, Agarwal GC (1971) Dynamic relationship between isometric muscle tension and the electromyogram in man. J Appl Physiol 30(3): 345–351

    Google Scholar 

  5. Granata KP, Marras WS (1993) An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions. J Biomech 26(12): 1429–1438

    Article  Google Scholar 

  6. Hill A (1938) The heat of shortening and the dynamic constants of muscle. Proc Roy Soc (B) Lond 126: 136–195

    Article  Google Scholar 

  7. Hof AL, van den Berg J (1977) Linearity between the weighted sum of the EMGs of the human triceps surae and the total torque. J Biomech 10(9): 529–539

    Article  Google Scholar 

  8. Hof AL, Van den Berg J (1981) EMG to force processing II: Estimation of parameters of the Hill muscle model for the human triceps surae by means of a calfergometer. J Biomech 14(11): 759–770

    Article  Google Scholar 

  9. Hopkins JT, Feland JB, Hunter I (2007) A comparison of voluntary and involuntary measures of electromechanical delay. Int J Neurosci 117(5): 597–604

    Article  Google Scholar 

  10. Jonkers I, Spaepen A, Papaioannou G, Stewart C (2002) An EMG-based, muscle driven forward simulation of single support phase of gait. J Biomech 35(5): 609–619

    Article  Google Scholar 

  11. Koo TK, Mak AF (2005) Feasibility of using EMG driven neuromusculoskeletal model for prediction of dynamic movement of the elbow. J Electromyogr Kinesiol 15(1): 12–26

    Article  Google Scholar 

  12. Langenderfer J, LaScalza S, Mell A, Carpenter JE, Kuhn JE, Hughes RE (2005) An EMG-driven model of the upper extremity and estimation of long head biceps force. Comput Biol Med 35(1): 25–39

    Article  Google Scholar 

  13. Lindström L, Magnusson R, Petersen I (1974) Muscle load influence on myoelectric signal characteristics. Scand J Rehab Med Suppl 3: 27–148

    Google Scholar 

  14. Lippold OCJ (1952) The relation between integrated action potentials in a human muscle and its isometric tension. J Physiol 117(4): 492–499

    Google Scholar 

  15. Lloyd DG, Besier TF (2003) An emg-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J Biomech 36(6): 765–776

    Article  Google Scholar 

  16. Mademli L, Arampatzis A (2008) Mechanical and morphological properties of the triceps surae muscle-tendon unit in old and young adults and their interaction with a submaximal fatiguing contraction. J Electromyogr Kinesiol 18(1): 89–98

    Article  Google Scholar 

  17. Maganaris CN, Paul JP (2000) Load-elongation characteristics of in vivo human tendon and aponeurosis. J Exp Biol 203(Pt 4): 751–756

    Google Scholar 

  18. Manal K, Buchanan TS (2003) A one-parameter neural activation to muscle activation model: Estimating isometric joint moments from electromyograms. J Biomech 36(8): 1197–1202

    Article  Google Scholar 

  19. McGill SM (1992) A myoelectrically based dynamic three-dimensional model to predict loads on lumbar spine tissues during lateral bending. J Biomech 25(4): 395–414

    MathSciNet  Article  Google Scholar 

  20. Muraoka T, Muramatsu T, Fukunaga T, Kanehisa H (2004) Influence of tendon slack on electromechanical delay in the human medial gastrocnemius in vivo. J Appl Physiol 96(2): 540–544

    Article  Google Scholar 

  21. Putz R, Pabst R (2000) Sobotta–Atlas der Anatomie des Menschen, vol 1 Kopf, Hals, obere Extremität. Urban & Fischer, München

    Google Scholar 

  22. Seth A, Pandy MG (2007) A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement. J Biomech 40(2): 356–366

    Article  Google Scholar 

  23. Sust M, Schmalz T, Beyer L, Rost R, Hansen E, Weiss T (1997) Assessment of isometric contractions performed with maximal subjective effort: Corresponding results for eeg changes and force measurements. Int J Neurosci 92(1–2): 103–118

    Article  Google Scholar 

  24. Thaller S, Wagner H (2004) The relation between Hillõs equation and individual muscle properties. J Theor Biol 231(3): 319–332

    MathSciNet  Article  Google Scholar 

  25. Vint PF, McLean SP, Harron GM (2001) Electromechanical delay in isometric actions initiated from nonresting levels. Med Sci Sports Exerc 33(6): 978–983

    Article  Google Scholar 

  26. Vredenbregt J, Rau G (1973) Surface electromyography in relation to force, muscle length and endurance. In: Desmedt JE (ed.) New developments in electromyography and clinical neurophysiology, vol 1. Karger, Basel, pp 607–622

    Google Scholar 

  27. Wagner H, Siebert T, Ellerby DJ, Marsh RL, Blickhan R (2005) Isofit: A model-based method to measure muscle-tendon properties simultaneously. Biomech Model Mechanobiol 4(1): 10–19

    Article  Google Scholar 

  28. Zajac F (1989) Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng 17(4): 359–411

    Google Scholar 

  29. Zhou S, Lawson DL, Morrison WE, Fairweather I (1995) Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation. Eur J Appl Physiol Occup Physiol 70(2): 138–145

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heiko Wagner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wagner, H., Boström, K. & Rinke, B. Predicting isometric force from muscular activation using a physiologically inspired model. Biomech Model Mechanobiol 10, 955–961 (2011). https://doi.org/10.1007/s10237-011-0286-2

Download citation

Keywords

  • Muscular model
  • Surface EMG
  • Isometric contraction
  • Parameter estimation
  • Model validation