Skip to main content
Log in

Inverse method of stress analysis for cerebral aneurysms

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

We present a method for predicting the wall stress in a class of cerebral aneurysms. The method hinges on an inverse formulation of the elastostatic equilibrium problem; it takes as the input a deformed configuration and the corresponding pressure, and predicts the wall stress in the given deformed state. For a membrane structure, the inverse formulation possesses a remarkable feature, that is, it can practically determine the wall tension without accurate knowledge of the wall elastic properties. In this paper, we present a finite element formulation for the inverse membrane problem and perform material sensitivity studies on idealized lesions and an image-based cerebral aneurysm model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Doyle TC and Ericksen JL (1956). Nonlinear elasticity. Adv Appl Mech 4: 53–115

    Article  MathSciNet  Google Scholar 

  • Elger DF, Blackketter DM, Budwig RS and Johansen KH (1996). The influence of shape on the stresses in model abdominal aortic aneurysms. J Biomech Eng Trans ASME 118: 326–332

    Article  Google Scholar 

  • Frankel T (1997). The geometry of physics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Goldberg MA (1965). A linearized large deformation analysis for rotationally symmetric membranes. ASME J Appl Mech 32: 444–445

    Google Scholar 

  • Govindjee S and Mihalic PA (1996). Computational methods for inverse finite elastostatics. Comput Methods Appl Mech Eng 136: 47–57

    Article  MATH  Google Scholar 

  • Govindjee S and Mihalic PA (1998). Computational methods for inverse deformations in quasi-incompressible finite elasticity. Int J Numer Methods Eng 43: 821–838

    Article  MATH  Google Scholar 

  • Green AE and Adkins JE (1970). Large elastic deformations, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

  • Gruttmann F and Taylor RL (1992). Theory and finite element formulation of rubberlike membrane shells using principal stretches. Inte J Numer Methods Eng 35: 1111–1126

    Article  MATH  Google Scholar 

  • Humphrey JD (2002). Cardiovascular solid mechanics. Springer, New York

    Google Scholar 

  • Humphrey JD and Canham PB (2000). Structure, mechanical properties and mechanics of intracranial saccular aneurysms. J Elast 61: 49–81

    Article  MATH  Google Scholar 

  • Humphrey JD and Kyriacou SK (1996). The use of laplace’s equation in aneurysms mechanics. Neurol Res 18: 204–208

    Google Scholar 

  • Hsu FPK, Schwab C, Rigamonti D and Humphrey JD (1994). Identification of response functions from axisymmetrical membrane inflation tests—implications for biomechanics. Int J Solids Struct 31: 3375–3386

    Article  MATH  Google Scholar 

  • Hsu FPK, Liu ACM, Downs J, Rigamonti D and Humphrey JD (1995). A triplane video-based experimental system for studying axisymmetrically inflated biomembranes. IEEE Trans Biomed Eng 42: 442–450

    Article  Google Scholar 

  • Koishi M and Govindjee S (2001). Inverse design methodology of a tire. Tire Sci Technol 29: 155–170

    Article  Google Scholar 

  • Kyriacou SK and Humphrey JD (1996). Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms. J Biomech 29: 1015–1022

    Article  Google Scholar 

  • Kyriacou SK, Schwab C and Humphrey JD (1996). Finite element analysis of nonlinear orthotropic hyperelastic membrane. Comput Mech 18: 269–278

    Article  MATH  Google Scholar 

  • Kyriacou SK, Shah AD and Humphrey JD (1997). Inverse finite element characterization of nonlinear hyperelastic membranes. J Appl Mech-Trans ASME, 64: 257–262

    Article  MATH  Google Scholar 

  • Lu J, Zhou X and Raghavan ML (2007a). Inverse elastostatic stress analysis in pre-deformed biological structures: demonstration using abdominal aortic aneurysm. J Biomech 40: 693–696

    Article  Google Scholar 

  • Lu J, Zhou X and Raghavan ML (2007b). Computational method of inverse elastostatics for anisotropic hyperelastic solids. Int J Numer Methods Eng 69: 1239–1261

    Article  MathSciNet  Google Scholar 

  • Ma B, Harbaugh RE and Raghavan ML (2004). Three-dimensional geometrical characterization of cerebral aneurysms. Ann Biomed Eng 32: 264–273

    Article  Google Scholar 

  • Ma B, Lu J, Harbaugh RE and Raghavan ML (2007). Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms. ASME J Biomed Eng 129: 88–99

    Article  Google Scholar 

  • Naghdi PM (1972). The theory of plates and shells. In: Truesdell, C (eds) Handbuch der Physik, vol VIa/2, pp 425–640. Springer, Berlin

    Google Scholar 

  • Pipkin AC (1984). Integration of an equation in membrane theory. J Appl Math Phys (ZAMP) 19: 818–819

    Google Scholar 

  • Rossettos JN (1966) Nonlinear membrane solutions for symmetrically loaded deep membranes of revolution. Technical Report NASA TN D-3297, NASA

  • Schievink WI (1997). Intracranial aneurysms. New Engl J Med 336: 28–40

    Article  Google Scholar 

  • Scott A, Ferguson GG and Roach MR (1972). Comparison of the elastic properties of human intracranial arteries and aneurysms. Can J Physiol Pharmacol 50: 328–332

    Google Scholar 

  • Seshaiyer P and Humphrey JD (2003). A sub-domain inverse finite element characterization of hyperelastic membranes including soft tissues. J Biomech Eng-Trans ASME 125: 363–371

    Article  Google Scholar 

  • Seshaiyer P, Hsu FPK, Shah AD, Kyriacou SK and Humphrey JD (2001). Multiaxial mechanical behavior of human saccular aneurysms. Comput Methods Biomed Eng 4: 281–289

    Article  Google Scholar 

  • Shah AD, Harris JL, Kyriacou SK and Humphrey JD (1998). Further roles of geometry and properties in the mechanics of saccular aneurysms. Comput Methods Biomech Biomed Eng 1: 109–121

    Google Scholar 

  • Simo JC, Fox DD and Rifai MS (1990). On a stress resultant geometrically exact shell-model. Part III: computational aspects of the nonlinear-theory. Comput Methods Appl Mech Eng 79: 21–70

    Article  MATH  MathSciNet  Google Scholar 

  • Steiger HJ, Aaslid R, Keller S and Reulen HJ (1989). Strength, elasticity and viscoelastic properties of cerebral aneurysms. Heart Vessels 5: 41–46

    Article  Google Scholar 

  • Taylor RL (2003). FEAP user manual: v7.5. Technical report. Department of Civil and Environmental Engineering. University of California, Berkeley

    Google Scholar 

  • Toth M, Nadasy GL, Nyary I, Kerenyi T, Orosz M, Molnarka G and Monos E (1998). Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms. J Vasc Res 35: 345–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Zhou, X. & Raghavan, M.L. Inverse method of stress analysis for cerebral aneurysms. Biomech Model Mechanobiol 7, 477–486 (2008). https://doi.org/10.1007/s10237-007-0110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-007-0110-1

Keywords

Navigation