Skip to main content

Advertisement

Log in

Cold fronts control multiscale spatiotemporal hydroperiod patterns in a man-made subtropical coastal delta (Wax Lake Region, Louisiana USA)

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Atmospheric cold fronts quasi-periodically produce storm surges and generate significant subtidal oscillations of water levels and water transport in coastal environments. Yet, it is unclear how these weather events—at regional scales —control the hydrodynamics in delta-dominated coasts. Here, we used a numerical model (SCHISM) to simulate the inundation/drying and water circulations generated by varying winds associated with cold front passages across the Atchafalaya Bay in the northern Gulf of Mexico, specifically the Wax Lake Delta (WLD) region. Water transport induced by winds through major channels of the WLD and that between the adjacent Vermilion Bay and inner shelf were quantified to evaluate the impact of cold fronts. Results show that significant wetting/drying conditions are highly correlated with wind direction and strength. Southerly/easterly winds tend to cause water set-up, thus inundating the delta region, while northerly and westerly winds cause water set-down, draining the bay into the continental shelf. As a result, up to 60% of the delta area (~ 50 km2) can become exposed land under northerly winds. The interconnectivity of the delta channel system is also highly dependent on the wind direction and magnitude: up to 37% of the total transport is through the shallow waters outside of the channels during cold fronts. In contrast, the water levels and velocity variations in the delta region were negatively correlated with the alongshore wind, a result of Ekman transport. At the delta head, where freshwater flows like a strong jet into the region, the velocity is marginally correlated with the wind but mostly correlated with seasonal river discharge variability of river discharge. At the transitional zone between the bay and coastal ocean, water level and surface flows are dominated by tidal forcing in contrast to the delta lobes area where wind regulates the flooding area extension. The bottom velocity and water levels at sites along the Atchafalaya Bay mouth negatively correlate with onshore wind, indicating bottom return flows against the wind. Our study offers a glimpse of how a combination of atmospheric and hydrodynamic forces operate in a young delta, where the coast is experiencing the highest sea level rise in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated and/or analyzed during this study are available from the corresponding author on reasonable request.

References

  • Allen JI, Somerfield PJ, Gilbert FJ (2007) Quantifying uncertainty in high‐resolution coupled hydrodynamic‐ecosystem models. J Mar Syst 64:3–14. https://doi.org/10.1016/j.jmarsys.2006.02.010

  • Allison MA, Meselhe EA (2010) The use of large water and sediment diversions in the lower Mississippi River (Louisiana) for coastalrestoration. J Hydrol 387(3–4):346–360. https://doi.org/10.1016/j.jhydrol.2010.04.001

    Article  Google Scholar 

  • Benedetto KM, Trepanier JC (2020) Climatology and spatiotemporal analysis of north atlantic rapidly intensifying hurricanes (1851–2017). Atmosphere 11:291. https://doi.org/10.3390/atmos11030291

  • Bentley SJ, Blum MD, Maloney J, Pond L, Paulsell R (2016) The Mississippi River source-to-sink system: Perspectives on tectonic, climatic, and anthropogenic influences, Miocene to Anthropocene. Earth Sci Rev 153:139–174

    Article  Google Scholar 

  • Bianchi TS, Dimarco SF, Cowan JH, Hetland RD, Chapman P, Day JW, Allison MA (2010) The science of hypoxia in the Northern Gulf of Mexico: A review. Sci Total Environ 408:1471–1484

    Article  CAS  Google Scholar 

  • Blum MD, Roberts HH (2012) The Mississippi Delta Region: Past, Present, and Future. In Annual Review of Earth and Planetary Sciences, Vol 40, eds. R. Jeanloz, 655–683

  • Blum MD, Roberts HH (2009) Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nat Geosci 2:488–491

    Article  CAS  Google Scholar 

  • Bonan GB, Doney SC (2018) Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359:eaam8328

    Article  Google Scholar 

  • Boon JD (2004) Secrets of the tide: tide and tidal current analysis and predictions, storm surges and sea level trends. Woodhead Publishing, pp 1–210. https://doi.org/10.1016/c2013-0-18114-7

  • Borchert SM, Osland MJ, Enwright NM, Griffith KT (2018) Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. J Appl Ecol 55:2876–2887

    Article  Google Scholar 

  • Carle MV, Wang L, Sasser CE (2014) Mapping freshwater marsh species distributions using WorldView-2 high-resolution multispectral satellite imagery. Int J Remote Sens 35:4698–4716

    Article  Google Scholar 

  • Christensen A, Twilley RR, Willson CS, Castaneda-Moya E (2020) Simulating hydrological connectivity and water age within a coastal deltaic floodplain of the Mississippi River Delta. Estuar Coast Shelf Sci 245:106995. https://doi.org/10.1016/j.ecss.2020.106995

  • Clark PU, Shakun JD, Marcott SA, Mix AC, Eby M, Kulp S, Levermann A, Milne GA, Pfister PL, Santer BD, Schrag DP, Solomon S, Stocker TF, Strauss BH, Weaver AJ, Winkelmann R, Archer D, Bard E, Goldner A, Lambeck K, Pierrehumbert RT, Plattner G-K (2016) Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat Clim Chang 6:360–369

    Article  Google Scholar 

  • Couvillion BR, Fischer MR, Beck HJ, Sleavin WJ (2016) Spatial Configuration Trends in Coastal Louisiana from 1985 to 2010. Wetlands 36:347–359

    Article  Google Scholar 

  • CPRA (2023) Louisiana’s Comprehensive Master Plan for a Sustainable Coast Coastal Protection and Restoration Authority of Louisiana, Baton Rouge, LA

  • Day JW, Clark HC, Chang C, Hunter R, Norman CR (2020) Life cycle of oil and gas fields in the Mississippi river delta: a review. Water 12(5):1492. https://doi.org/10.3390/w12051492

  • Day JW, Hunter RG, Lane RR, Shaffer GP, Day JN (2019) Long-term assimilation wetlands in coastal Louisiana: Review of monitoring data and management. Ecol Eng 137:7–20

    Article  Google Scholar 

  • Day JW, Lane RR, D’Elia CF, Wiegman ARH, Rutherford JS, Shaffer GP, Brantley CG, Kemp GP (2016) Large infrequently operated river diversions for Mississippi delta restoration. Estuar Coast Shelf Sci 183:292–303

    Article  Google Scholar 

  • Day J, Goodman R, Chen Z, Hunter R, Giosan L, Wang Y (2021) Deltas in arid environments. Water 13(12):1677. https://doi.org/10.3390/w13121677

  • Diefenderfer HL, Steyer GD, Harwell MC, LoSchiavo AJ, Neckles HA, Burdick DM, Johnson GE, Buenau KE, Trujillo E, Callaway JC, Thom RM, Ganju NK, Twilley RR (2021) Applying cumulative effects to strategically advance large-scale ecosystem restoration. Front Ecol Environ 19:108–117

    Article  Google Scholar 

  • Doyle TW (2009) Hurricane frequency and landfall distribution for coastal wetlands of the Gulf coast, USA. Wetlands 29:35–43

    Article  Google Scholar 

  • Edmonds DA, Caldwell RL, Brondizio ES et al (2020) Coastal flooding will disproportionately impact people on river deltas. Nat Commun 11:4741. https://doi.org/10.1038/s41467-020-18531-4

  • Elliton C, Xu K, Rivera-Monroy VH (2020) The Impact of Biophysical Processes on Sediment Transport in the Wax Lake Delta (Louisiana, USA). Water 12:2072

    Article  CAS  Google Scholar 

  • Elsey-Quirk T, Graham SA, Mendelssohn IA, Snedden G, Day JW, Twilley RR, Shaffer G, Sharp LA, Pahl J, Lane RR (2019) Mississippi river sediment diversions and coastal wetland sustainability: Synthesis of responses to freshwater, sediment, and nutrient inputs. Estuar Coast Shelf Sci 221:170–183

    Article  CAS  Google Scholar 

  • Feizabadi S, Li C, Hiatt M (2023) A Numerical Experiment of Cold Front Induced Circulation in Wax Lake Delta: Evaluation of Forcing Factors. Front Mar Sci. https://doi.org/10.3389/fmars.2023.1228446

    Article  Google Scholar 

  • Feng Z, Li C (2010) Cold-front-induced flushing of the Louisiana Bays. J Mar Syst 82:252–264

    Article  Google Scholar 

  • Giosan L, Syvitski J, Constantinescu S, Day J (2014) Climate change: Protect the world’s deltas. Nature 516:31–33

    Article  CAS  Google Scholar 

  • Gleeson T, Wang-Erlandsson L, Zipper SC, Porkka M, Jaramillo F, Gerten D, Fetzer I, Cornell SE, Piemontese L, Gordon LJ, Rockstrom J, Oki T, Sivapalan M, Wada Y, Brauman KA, Florke M, Bierkens MFP, Lehner B, Keys P, Kummu M, Wagener T, Dadson S, Troy TJ, Steffen W, Falkenmark M, Famiglietti JS (2020) The Water Planetary Boundary: Interrogation and Revision. One Earth 2:223–234

    Article  Google Scholar 

  • Guo B, Subrahmanyam MV, Li C (2020) Waves on Louisiana Continental Shelf Influenced by Atmospheric Fronts. Sci Rep 10

  • Hiatt MA (2013) Network-based analysis of river delta surface hydrology: An example from wax lake delta. Master’s Dissertation, University of Texas at Austin, Austin, TX, USA

  • Hiatt M, Passalacqua P (2015) Hydrological connectivity in river deltas: The first-order importance of channel-island exchange. Water Resour Res 51:2264–2282. https://doi.org/10.1002/2014WR016149

    Article  Google Scholar 

  • Hiatt M, Castaneda-Moya E, Twilley R, Hodges BR, Passalacqua P (2018a) Channel-island connectivity affects water exposure time distributions in a coastal river delta. Water Resour Res 54:2212–2232

    Article  Google Scholar 

  • Hiatt M, Castañeda-Moya E, Twilley R, Hodges BR, Passalacqua P (2018b) Channel-island connectivity affects exposure time distributions in a coastal river delta. Water Resour Res 54. https://doi.org/10.1002/2017WR021289

  • Hiatt M, Snedden G, Day JW, Rohli RV, Nyman JA, Lane R, Sharp LA (2019) Drivers and impacts of water level fluctuations in the Mississippi River delta: Implications for delta restoration. Estuar Coast Shelf Sci 224:117–137

    Article  Google Scholar 

  • Huang W, Li C (2019) Spatial variation of cold front wind-driven circulation and quasi-steady state balance in Lake Pontchartrain Estuary. Estuar Coast Shelf Sci 224:154–170

    Article  Google Scholar 

  • Huang W, Ye F, Zhang Y, Park K, Du J, Moghimi S, Myers E, Pe’eri S, Calzada JR, Yu HC, Nunez K, Liu Z (2021) Compounding factors for extreme flooding around Galveston Bay during Hurricane Harvey. Ocean Model 158:101735

    Article  Google Scholar 

  • Huang W, Li C (2017) Cold front driven flows through multiple inlets of Lake Pontchartrain Estuary. J Geophys Res Oceans 122:8627–8645. https://doi.org/10.1002/2017JC012977

  • Huang W, Li C, White JR, Bargu S, Milan B, Bentley (2020) Numerical experiments on variation of freshwater plume and leakage effect from Mississippi river diversion in the lake pontchartrain estuary abstract key points. J Geophys Res Oceans 125(2). https://doi.org/10.1029/2019JC015282

  • Huang W, Ye F, Zhang Y, Du J, Park K, Yu HC, Wang Z (2024) Hydrodynamic responses of estuarine bays along the Texas-Louisiana coast during Hurricane Harvey. Ocean Modelling 187:102302. https://doi.org/10.1016/j.ocemod.2023.102302

  • Huang W, Zhang YJ, Ye F, Wang Z, Moghimi S, Myers E, Yu HC (2022) Tidal Simulation Revisited. Ocean Dyn 1–19. https://doi.org/10.1007/s10236-022-01498-9

  • Jarriel T, Swartz J, Passalacqua P (2021) Global rates and patterns of channel migration in river deltas. Proc Natl Acad Sci 118:e2103178118

    Article  Google Scholar 

  • Jensen D, Cavanaugh KC, Simard M, Christensen A, Rovai A, Twilley R (2021) Aboveground biomass distributions and vegetation composition changes in Louisiana’s Wax Lake Delta. Estuar Coast Shelf Sci 250:107139

    Article  Google Scholar 

  • Kaiser MJ, Narra SA (2019) Retrospective of oil and gas field development in the U.S. outer continental shelf gulf of Mexico, 1947–2017. Nat Resour Res 28:685–715. https://doi.org/10.1007/s11053-018-9414-3

  • Keen TR, Stavn RH (2012) Hydrodynamics and marine optics during cold fronts at Santa Rosa Island, Florida. J Coast Res 28(5):1073–1087

    Article  Google Scholar 

  • Kim W, Mohrig D, Twilley R, Paola C, Parker G (2009) Is it feasible to build new land in the Mississippi River delta? EOS Trans Am Geophys Union 90:373–374. https://doi.org/10.1029/2009EO420001

    Article  Google Scholar 

  • Knights D, Sawyer AH, Barnes RT, Piliouras A, Schwend J, Edmonds DA, Brown AM (2020) Nitrate Removal Across Ecogeomorphic Zones in Wax Lake Delta, Louisiana (USA). Water Resour Res 56(8):e2019WR026867

    Article  CAS  Google Scholar 

  • Kolker AS, Allison MA, Hameed S (2011) An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico. Geophys Res Lett 38

  • Lauve W (2019) Assessment and correction of Lidar-Derived DEMS in the coastal marshes of Louisiana, 114 pp. Louisiana State University and Agricultural and Mechanical College, Baton Rouge, Louisiana

    Google Scholar 

  • Li C, Huang W, Chen C, Lin H (2018a) Flow Regimes and Adjustment to Wind-Driven Motions in Lake Pontchartrain Estuary: A Modeling Experiment Using FVCOM. J Geophys Res: Oceans 123(11):8460–8488

    Article  Google Scholar 

  • Li C, Huang W, Milan B (2019) Atmospheric cold front induced exchange flows through a microtidal multi-inlet bay: Analysis using multiple horizontal ADCPs and FVCOM simulations. J Atmos Ocean Technol 36:443–472

    Article  Google Scholar 

  • Li C, Huang W, Wu R, Sheremet A (2020) Weather induced quasi-periodic motions in estuaries and bays: Meteorological tide. China Ocean Eng 34:299–313

    Article  Google Scholar 

  • Li C, Roberts H, Stone G, Weeks E, Luo Y (2011) Wind surge and saltwater intrusion in Atchafalaya Bay under onshore winds prior to cold front passage. Hydrobiologia 658:27–39

    Article  CAS  Google Scholar 

  • Li C, Weeks E, Huang W, Milan B, Wu R (2018b) Weather-Induced Transport through a Tidal Channel Calibrated by an Unmanned Boa. J Atmos Ocean Technol 35:261–279

    Article  Google Scholar 

  • Li C, Weeks E, Rego JL (2009) In situ measurements of saltwater flux through tidal passes of Lake Pontchartrain estuary by Hurricanes Gustav and Ike in September 2008. Geophys Res Lett 36(19). https://doi.org/10.1029/2009GL039802

  • Liu J (2020) Modeling ground elevation of Louisiana Coastal Wetlands and analyzing relative sea level rise inundation using RSET-MH and Lidar measurements, Doctor of Philosophy thesis, 111 pp. Florida Atlantic University, Boca Raton

    Google Scholar 

  • Meselhe E, Sadid K, Khadka A (2021) Sediment Distribution, Retention and Morphodynamic Analysis of a River-Dominated Deltaic System. Water 13:1341

    Article  Google Scholar 

  • Miller RC, Zedler JB (2003) Responses of native and invasive wetland plants to hydroperiod and water depth. Plant Ecol 167:57–69

    Article  Google Scholar 

  • Moeller CC, Huh OK, Roberts HH, Gumley LE, Menzel WP (1993) Response of Louisiana coastal environments to a coastal front passage. J Coast Res 9(2):434–447

    Google Scholar 

  • Nienhuis JH, Wal RSW (2021) Projections of Global Delta Land Loss From Sea-Level Rise in the 21st Century. Geophys Res Lett 48:e2021GL093368

    Article  Google Scholar 

  • Olliver EA, Edmonds DA, Shaw JB (2020) Influence of floods, tides, and vegetation on sediment retention inWax Lake Delta, Louisiana, USA. J Geophys Res Earth Surf 125:e2019JF005316. https://doi.org/10.1029/2019JF005316

  • Rabalais NN, Turner RE, Sen Gupta BK, Boesch DF, Chapman P, Murrell MC (2007) Hypoxia in the northern Gulf of Mexico: Does the science support the Plan to Reduce, Mitigate, and Control Hypoxia? Estuar Coasts 30:753–772

    Article  CAS  Google Scholar 

  • Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619

    Article  CAS  Google Scholar 

  • Ren L, Rabalais NN, Turner RE (2020) Effects of Mississippi River water on phytoplankton growth and composition in the upper Barataria estuary, Louisiana. Hydrobiologia 847:1831–1850

    Article  CAS  Google Scholar 

  • Robert HH (1997) Dynamic changes of the Holocene Mississippi River Delta Plain-The delta cycle. J Coastal Res 13:605–627

    Google Scholar 

  • Roberts HH, Coleman JM (1996) Holocene evolution of the deltaic plain: A perspective - From Fisk to present. Eng Geol 45:113–138

    Article  Google Scholar 

  • Roberts HH, Coleman JM, Bentley SJ, Walker N (2003) An embryonic major delta lobe: a new generation of delta studies in the Atchafalaya-Wax Lake delta systems. GCAGS/GCSSEPM Trans 53:690–703

    Google Scholar 

  • Roberts HH, DeLaune RD, White JR, Li C, Sasser CE, Braud D, Weeks E, Khalil S (2015a) Floods and cold front passages: Impacts on coastal marshes in a river di- version setting (Wax Lake delta area, Louisiana). J Coast Res (0749–0208) 31(5);1057–1068 Coconut Creek (Florida)

  • Roberts HH, DeLaune RD, White JR, Li C, Sasser CE, Braud D et al (2015b) Floods and cold front passages: Impacts on coastal marshes in a river diversion setting (Wax Lake delta area, Louisiana). J Coast Res 1057–1068. https://doi.org/10.2112/JCOASTRES-D-14-00173.1

  • Rosen T, Xu YJ (2013) Recent decadal growth of the Atchafalaya River delta complex; effects of variable riverine sediment input and vegetation succession. Geomorphology 194:108–120

    Article  Google Scholar 

  • Scavia D, Field JC, Boesch DF, Buddemeier RW, Burkett V, Cayan DR, Fogarty M, Harwell MA, Howarth RW, Mason C, Reed DJ, Royer TC, Sallenger AH, Titus JG (2002) Climate change impacts on U.S. Coastal and Marine Ecosystems. Estuaries 25:149–164

    Article  Google Scholar 

  • Sendrowski A, Sadid K, Meselhe E, Wagner W, Mohrig D, Passalacqua P (2018) Transfer Entropy as a Tool for Hydrodynamic Model Validation. Entropy 20:58

    Article  Google Scholar 

  • Sendrowski A, Castañeda-Moya E, Twilley R, Passalacqua P (2021) Biogeochemical and hydrological variables synergistically influence nitrate variability in coastal deltaic wetlands. J Geophys Res Biogeosci 126:e2020JG005737. https://doi.org/10.1029/2020JG005737

  • Shafiei H, Soloy A, Turki I, Simard M, Lecoq N, Laignel B (2022) Numerical investigation of the effects of distributary bathymetry and roughness on tidal hydrodynamics of Wax Lake region under calm conditions. Estuar Coast Shelf Sci 265(5):107694. https://doi.org/10.1016/j.ecss.2021.107694

    Article  Google Scholar 

  • Shaw JB, Mohrig D, Wagner RW (2016) Flow patterns and morphology of a prograding river delta. J Geophys Res-Earth Surf 121:372–391

    Article  Google Scholar 

  • Shaw JB, Estep JD, Whaling AR, Sanks KM, Edmonds DA (2018) Measuring subaqueous progradation of the Wax Lake Delta with a model of flow direction divergence. Earth Surf Dyn 6:1155–1168

    Article  Google Scholar 

  • Shaw JB, Mohrig D, Whitman SK (2013) The morphology and evolution of channels on the Wax Lake Delta, Louisiana, USA. J Geophys Res Earth Surf 118:1562–1584. https://doi.org/10.1002/jgrf.20123

  • Shields MR, Bianchi TS, Mohrig D, Hutchings JA, Kenney WF, Kolker AS, Curtis JH (2017) Carbon storage in the Mississippi River delta enhanced by environmental engineering. Nat Geosci 10:846–851

    Article  CAS  Google Scholar 

  • Smith JE, Bentley SJ, Snedden GA, White C (2015) What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas? Sci Rep 5:17582

    Article  CAS  Google Scholar 

  • Snedden GA, Cable JE, Swarzenski C, Swenson E (2007) Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion. Estuar Coast Shelf Sci 71:181–193

    Article  Google Scholar 

  • Templet PH, Meyer-Arendt KJ (1988) Louisiana wetland loss: A regional water management approach to the problem. Environ Manage 12:181–192

    Article  Google Scholar 

  • Törnqvist TE, Jankowski KL, Li Y-X, González JL (2020) Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. Sci Adv 6:eaaz5512

    Article  Google Scholar 

  • Törnqvist TE, Cahoon DR, Morris JT, Day JW (2021) Coastal wetland resilience, accelerated sea-level rise, and the importance of timescale. AGU Advances 2:e2020AV000334. https://doi.org/10.1029/2020AV000334

  • Upreti K, Maiti K, Rivera-Monroy VH (2019) Microbial mediated sedimentary phosphorus mobilization in emerging and eroding wetlands of coastal Louisiana. Sci Total Environ 651:122–133

    Article  CAS  Google Scholar 

  • Upreti K, Rivera-Monroy VH, Maiti K, Giblin A, Geaghan JP (2021) Emerging wetlands from river diversions can sustain high denitrification rates in a coastal delta. J Geophys Res Biogeosci 126:e2020JG006217. https://doi.org/10.1029/2020JG006217

  • Volke MA, Scott ML, Johnson WC, Dixon MD (2015) The Ecological Significance of Emerging Deltas in Regulated Rivers. Bioscience 65:598–611

    Article  Google Scholar 

  • Ward ND, Megonigal JP, Bond-Lamberty B et al (2020) Representing the function and sensitivity of coastal interfaces in Earth system models. Nat Commun 11:2458. https://doi.org/10.1038/s41467-020-16236-2

  • Cornwall W (2021) Unleashing big muddy science. 372(6540):334–337. https://doi.org/10.1126/science.372.6540.334

  • Wellner R, Beaubouef R, van Wagoner J, Roberts HH, Sun T (2005) Jet-plume depositional bodies: The primary building blocks of Wax Lake Delta. Trans Gulf Coast Assoc Geol Soc 55:867–909

    Google Scholar 

  • Wright K, Passalacqua P, Simard M, Jones CE (2022) Integrating connectivity into hydrodynamic models: An automated open‐source method to refine an unstructured mesh using remote sensing. J Adv Model Earth Syst 14(8). https://doi.org/10.1029/2022MS003025

  • Wu H, Zhu JR, Shen J, Wang H (2011) Tidal modulation on the Changjiang River plume in summer. J Geophys Res 116:C08017. https://doi.org/10.1029/2011JC007209

    Article  Google Scholar 

  • Xu KH, Bentley SJ, Day JW, Freeman AM (2019) A review of sediment diversion in the Mississippi River Deltaic Plain. Estuar Coast Shelf Sci 225:106241. https://doi.org/10.1016/j.ecss.2019.05.023

  • Ye F, Huang W, Zhang YJ, Moghimi S, Myers E, Pe’eri S, Yu H-C (2021) A cross-scale study for compound flooding processes during Hurricane Florence. Nat Hazards Earth Syst Sci 21(6):1703–1719

    Article  Google Scholar 

  • Zhang Q (2015) Numerical simulation of cold front related hydrodynamics of Wax Lake Delta. Ph.D. Dissertation, Louisiana State University, Baton Rouge, LA, USA

  • Zhang Y, Ye F, Stanev EV, Grashorn S (2016) Seamless cross-scale modeling with SCHISM. Ocean Model 102:64–81

    Article  Google Scholar 

  • Zhang X, Meng X, Li C, Shang N, Wang J, Xu Y, Wu T, Mugnier C (2021) Micro-Topography Mapping through Terrestrial LiDAR in Densely Vegetated Coastal Environments. ISPRS Int J Geo Inf 10(10):665. https://doi.org/10.3390/ijgi10100665

    Article  Google Scholar 

  • Zhang Q, Li C, Huang W, Lin J, Hiatt M, Rivera-Monroy VH (2022) Water Circulation Driven by Cold Fronts in the Wax Lake Delta (Louisiana, USA). J Mar Sci Eng 2022(10):415. https://doi.org/10.3390/jmse10030415

    Article  Google Scholar 

  • Zhao X, Rivera-Monroy VH, Farfán LM et al (2021) Tropical cyclones cumulatively control regional carbon fluxes in Everglades mangrove wetlands (Florida, USA). Sci Rep 11:13927. https://doi.org/10.1038/s41598-021-92899-1

  • Zhao X, Rivera-Monroy VH, Li C, Vargas-Lopez IA, Rohli RV, Xue ZG, Castañeda-Moya E, Coronado-Molina C (2022) Temperature across vegetation canopy-water-soil interfaces is modulated by hydroperiod and extreme weather in coastal wetlands. Front Mar Sci 9:852901. https://doi.org/10.3389/fmars.2022.852901

Download references

Acknowledgements

We are grateful for the support and resources provided by the William & Mary Research Computing for providing platforms of visualizing model results (URL: https://www.wm.edu/it/rc), Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725, and the developer group of SCHISM for providing trainings and technical support. We also want to thank the Coastal Studies Institute Field Support Group at LSU for helping with the deployment and retrieval of the instrument for flow velocity measurements in 2006. V.H.R-M. participation in the preparation of this publication was supported by the US Department of the Interior, South Central-Climate Adaptation Center (Cooperative Agreement #G12AC00002). This study is supported by National Science Foundation Award 1736713, NOAA Cooperative Agreements NOAA-NOS-IOOS-2016-2004378, NA16NOS0120018, and NA21NOS0120092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Responsible Editor: Pierre F.J. Lermusiaux

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2044 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Li, C. & Rivera-Monroy, V.H. Cold fronts control multiscale spatiotemporal hydroperiod patterns in a man-made subtropical coastal delta (Wax Lake Region, Louisiana USA). Ocean Dynamics 74, 355–372 (2024). https://doi.org/10.1007/s10236-024-01608-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-024-01608-9

Keywords

Navigation