Skip to main content
Log in

Pathways of surface oceanic water intrusion into the Amazon Continental Shelf

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The Amazon Continental Shelf (ACS) is a shallow region (< 100 m), with a maximum width of 330 km, which encloses the northern portion of the Brazilian continental shelf and has great ecological and climatic importance on a global scale. Although important scientific efforts have been made to understand the hydrodynamics of the ACS and the dispersion of the Amazon River plume, there are still few studies that address surface oceanic water intrusion into the ACS. This study describes the existence of preferential surface oceanic water intrusion pathways into the ACS along 3 sectors: Maranhão (MA shelf), Pará (PA shelf) and Amapá (AP shelf). The analysis is based on: (i) 306 surface drifter trajectories along 1344 km of the ACS (provided by the Global Drifter Program) and (ii) 20 years of Lagrangian simulations (with Parcels model forced by currents from the reanalysis GLORYS). The results show that the MA shelf sector is the main pathway for surface oceanic water intrusions into the ACS, corresponding to 56% of the intrusions, followed by PA shelf (43%) and AP shelf (1%). During the austral summer, intrusions occur with a higher frequency in PA and AP shelf. The MA shelf shows weak seasonality in the intrusions. The temporal variability of particle intrusion rates into the ACS is directly related to the variability of the trade winds, and the meso-scale circulation associated with the North Brazil Current and the North Equatorial Countercurrent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the Global Drifter Program repository [https://www.nodc.noaa.gov/archive/arc0199/0248584/1.1/data/0-data/] and Copernicus Marine Service repository [https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_001_030/description].

References

  • Adam O, Bischoff T, Schneider T (2016) Seasonal and interannual variations of the energy flux equator and ITCZ. Part I: Zonally averaged ITCZ position. J Clim 29(9):3219–3230. https://doi.org/10.1175/JCLI-D-15-0512.1

    Article  ADS  Google Scholar 

  • Aguiar AL, Marta-Almeida M, Cruz LO, Pereira J, Cirano M (2022) Forcing mechanisms of the circulation on the Brazilian equatorial Shelf. Cont Shelf Res v 247104811. https://doi.org/10.1016/j.csr.2022.104811

  • Almeida N, Alves M, Nepomuceno Filho TM, Freire F, Souza GSS, Oliveira ACBL, Normando KM, Barbosa MN (2020) T. H. S. A three-dimensional (3D) structural model for an oil-producing basin of the Brazilian Equatorial margin. Mar Petrol Geol 104599 https://doi.org/10.1016/j.marpetgeo.2020.104599

  • Araújo J, Mello Filho G, Peixoto AS, Bentes UI, Santos B, Dutka-Gianelli MAS, Isaac J, V (2022) Multidimensional evaluation of Brown Shrimp Trawling Fisheries on the Amazon Continental Shelf. Front Mar Sci 9:801758. https://doi.org/10.3389/fmars.2022.801758

    Article  Google Scholar 

  • Beardsley RC, Candela J, Limeburner R, Geyer WR, Lentz SJ, Castro BM, Cacchione D, Carneiro N (1995) The M2tide on the Amazon Shelf. J Phys Res 100(C2):2283. https://doi.org/10.1029/94jc01688

    Article  ADS  Google Scholar 

  • Berden G, Piola A, Palma R, E., D (2022) Cross-shelf Exchange in the Southwestern Atlantic Shelf: Climatology and Extreme events. Front Mar Sci 9:855183. https://doi.org/10.3389/fmars.2022.855183

    Article  Google Scholar 

  • Bourlès B, Gouriou Y, Chuchla R (1999) On the circulation in the upper layer of the western equatorial Atlantic. J Geophys Res Oceans v 104:21151–21170

    Article  ADS  Google Scholar 

  • Brink KH (2016) Cross-Shelf Exchange. Annual Rev Mar Sci, 8(1), 59–78https://doi.org/10.1146/annurev-marine-010814-015717

  • Castro BM, Brandini FP, Pires-Vanin AMS, Miranda LB (2006) Multidisciplinary oceanographic processes on the western Atlantic continental shelf between 4◦N and 34◦S. In: Robinson AR, Brink K (eds) The Sea - the global Coastal Ocean: Interdisciplinary Regional studies and syntheses, 14A. Harvard University Press, Harvard, USA, pp 259–293

    Google Scholar 

  • Chen S-M (2023) Water Exchange due to wind and waves in a Monsoon Prevailing Tropical Atoll. J Mar Sci Eng 11:109. https://doi.org/10.3390/jmse11010109

    Article  Google Scholar 

  • Coles VJ, Brooks MT, Hopkins J, Stukel MR, Yager PL, Hood RR (2013) The pathways and properties of the Amazon River Plume in the tropical North Atlantic Ocean. J Geophys Res Oceans 118:6894–6913. https://doi.org/10.1002/2013JC008981

    Article  ADS  Google Scholar 

  • Combes V, Matano RP, Palma ED (2021) Circulation and cross-shelf exchanges in the northern shelf region of the southwestern Atlantic: kinematics. J Geophys Research: Oceans., 126, e2020JC016959 https://doi.org/10.1029/2020JC016959

    Article  Google Scholar 

  • Cruz R, Cintra IHA, Silva KCA, Abrunhosa FA (2013) Structure and diversity of the lobster community on the Amazon continental shelf. Crustaceana 86(9):1084–1102. https://doi.org/10.1163/15685403-00003227

    Article  Google Scholar 

  • Cruz CA, Ribeiro S, H. J. P., da Silva EB (2021) Exploratory plays of the Foz do Amazonas Basin, NW portion, in deep and ultra-deep waters. Brazilian Equatorial Margin J South Am Earth Sci 111:103475. https://doi.org/10.1016/j.jsames.2021.103475

    Article  CAS  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van deBerg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, ́olm H, Isaksen EV, ̊allberg LK P., McNally M, Monge-Sanz AP, Morcrette BM, Park J-J, Peubey B-K, de Rosnay C, Tavolato P, Thépaut C, Vitart J-N F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597 K ̈ohler M.,Matricardi. https://doi.org/10.1002/qj.828

    Article  ADS  Google Scholar 

  • Delandmeter P, van Sebille E (2019) The parcels v2.0 Lagrangian framework: new field interpolation schemes. Geosci Model Dev 12:3571–3584. https://doi.org/10.5194/gmd-12-3571-2019

    Article  ADS  Google Scholar 

  • Elipot S, Lumpkin R, Perez R, Lilly C, Early JM, Sykulski JJ, A., M (2016) A global surface drifter data set at hourly resolution. J Geophys Res Oceans 121:2937–2966. https://doi.org/10.1002/2016JC011716

    Article  ADS  Google Scholar 

  • Elipot S, Sykulski A, Lumpkin R, Centurioni L, Pazos M (2022) Hourly location, current velocity, and temperature collected from global drifter program drifters world-wide. https://doi.org/10.25921/x46c-3620. NOAA National Centers for Environmental Information. Dataset

  • Fonseca C, Goni A, Johns GJ, Campos WE, E., J., D (2004) Investigation of the North Brazil current retroflection and north equatorial countercurrent variability. Geophys Res Lett v 31:L21304. https://doi.org/10.1029/2004GL020054

    Article  ADS  Google Scholar 

  • Fontes RFC, Castro BM, Beardsley RC (2008) Numerical study of circulation on the inner Amazon Shelf. Ocean Dyn 58(3–4):187–198. https://doi.org/10.1007/s10236-008-0139-4

    Article  ADS  Google Scholar 

  • Francini-Filho R, Asp N, Siegle E, Hocevar J, Lowyck K, D’Avila N, Vasconcelos A, Baitelo A, Rezende R, Omachi CE, Thompson CY, Thompson CC, F. L (2018) Perspectives on the great amazon reef: extension. Biodiversity and threats. Front Mar Sci 5:142. https://doi.org/10.3389/fmars.2018.00142

    Article  Google Scholar 

  • Garcia TM, Campos CC, Mota EMT, Santos NMO, Campelo RP, de Prado S, Junior LCG, de Soares MM O (2020) Microplastics Subsurface Waters Western Equatorial Atl (Brazil) Mar Pollution Bull 110705. https://doi.org/10.1016/j.marpolbul.2019.110705

  • Garzoli SL, Ffield A, Yao Q (2003) NBC retroflection and rings, in Interhemispheric Water Exchange in the Atlantic Ocean, Elsevier Oceanogr. Ser., vol. 68, edited by G. Goni, and P. Malanotte-Rizzoli, pp. 357 – 374, Elsevier Sci., New York

  • Garzoli S, Ffield L, Johns A, Yao WE, Q (2004) North Brazil current retroflection and transports. J Phys Res 109:C01013. https://doi.org/10.1029/2003JC001775

    Article  ADS  Google Scholar 

  • Geyer WR, Beardsley RC, Lentz SJ, Candela J, Limeburner R, Johns WE, Castro B, Soares M (1996) I., D. Physical oceanography of the Amazon shelf. Continental Shelf Res 16(5–6), 575–616 https://doi.org/10.1016/0278-4343(95)00051-8

  • Guerrero L, Sheinbaum J, Mariño-Tapia I, Gonzalez-Rejón J J., Pérez-Brunius P (2020) Influence of mesoscale eddies on cross-shelf exchange in the western Gulf of Mexico. Cont Shelf Res 209:104243. https://doi.org/10.1016/j.csr.2020.104243

    Article  Google Scholar 

  • Huang G, Zhan H, He Q, Wei X, Li B (2021) A lagrangian study of the near-surface intrusion of Pacific water into the South China Sea. Acta Oceanol Sin 40(7):15–30. https://doi.org/10.1007/s13131-021-1766-6

    Article  Google Scholar 

  • Huthnance J (1995) M., Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge. Prog Oceanogr 35(4), 353–431 https://doi.org/10.1016/0079-6611(95)80003-c

  • Huthnance J, Hopkins J, Berx B, Dale A, Holt J, Hosegood P, Inall M, Jones S, Loveday B, Miller R, Polton PI, Porter J, Spingys M, C (2022) Ocean shelf exchange, NW European shelf seas: measurements, estimates and comparisons. Prog Oceanogr 202:102760. https://doi.org/10.1016/j.pocean.2022.102760

    Article  Google Scholar 

  • Iskandar MR, Cordova MR, Park Y-G (2022) Pathways and destinations of floating marine plastic debris from 10 major rivers in Java and Bali, Indonesia: a lagrangian particle tracking perspective. Mar Pollut Bull 185:114331. https://doi.org/10.1016/j.marpolbul.2022.114331

    Article  CAS  Google Scholar 

  • Jean-Michel L, Eric G, Romain Bé-B, Gilles G, Angélique M, Marie D, Clément B, Mathieu H, Olivier LG, Charly R, Tony C, Charles-Emmanuel T, Florent G, Giovanni R, Mounir B, Yann D, Pierre-Yves LT (2021) The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 reanalysis. Front Earth Sci 9:698876. https://doi.org/10.3389/feart.2021.698876

    Article  Google Scholar 

  • Johns WE, Lee TN, Beardsley RC, Candela J, Limeburner R, Castro B (1998) Annual Cycle and Variability of the North Brazil Current. Journal of Physical Oceanography, 28(1), 103–128 https://doi.org/10.1175/1520-0485(1998)028<0103:ACAVOT>2.0.CO;2

  • Lavagnino AC, Bastos AC, Filho A, de Moraes GM, Araujo FC, de Moura LS, R. L (2020) Geomorphometric seabed classification and potential Megahabitat distribution in the Amazon Continental Margin. Front Mar Sci 7:190. https://doi.org/10.3389/fmars.2020.00190

    Article  Google Scholar 

  • Lellouche J-M, Greiner E, Le Galloudec O, Garric G, Regnier C, Drevillon M et al (2018) Recent updates to the Copernicus Marine Service Global Ocean Monitoring and forecasting real-time 1∕12 ° high-resolution system. Ocean Sci 14:1093–1126. https://doi.org/10.5194/os-14-1093-2018

    Article  ADS  Google Scholar 

  • Lentz SJ (1995) Seasonal variations in the horizontal structure of the Amazon Plume inferred from historical hydrographic data. J Geophys Res 100(C2), 2391–2400 https://doi.org/10.1029/94jc01847

  • Lentz SJ, Limeburner R (1995) The Amazon River Plume during AMASSEDS: Spatial characteristics and salinity variability. J Geophys Res 100(C2), 2355–2375 https://doi.org/10.1029/94jc01411

  • Lessa GC, Teixeira CEP, Pereira J, Santos FM (2021) The 2019 Brazilian oil spill: insights on the physics behind the drift. J Mar Syst 222:103586. https://doi.org/10.1016/j.jmarsys.2021.103586

    Article  Google Scholar 

  • Louchard D, Gruber N, Münnich M (2021) The impact of the Amazon on the biological pump and the air-sea CO2 balance of the Western Tropical Atlantic. Glob Biogeochem Cycles 35. https://doi.org/10.1029/2020GB006818

  • Madec G, the NEMO Team (2008) NEMO Ocean Engine. Note Du Pôle De modélisation, vol 27. Institut Pierre-Simon Laplace (IPSL), France, pp 1288–1619

    Google Scholar 

  • Magris RA, Giarrizzo T (2020) Mysterious oil spill in the Atlantic Ocean threatens marine biodiversity and local people in Brazil. Mar Pollut Bull v 153:110961. https://doi.org/10.1016/j.marpolbul.2020.110961

    Article  CAS  Google Scholar 

  • Malan N, Archer M, Roughan M, Cetina-Heredia P, Hemming M, Rocha C, Schaeffer A, Suthers I, Queiroz E (2020) Eddy-driven cross-shelf transport in the East Australian Current separation zone. J Geophys Res Oceans 125, e2019JC015613 https://doi.org/10.1029/2019JC015613

    Article  Google Scholar 

  • Matano RP, Combes V, Piola AR, Guerrero R, Palma ED, Ted Strub P, James C, Fenco H, Chao Y, Saraceno M (2014) The salinity signature of the cross-shelf exchanges in the Southwestern Atlantic Ocean: Numerical simulations. J Geophys Res Oceans 119(11):7949–7968. https://doi.org/10.1002/2014jc010116

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Molinas E, Carneiro JC, Vinzon S (2020) Internal tides as a major process in Amazon continental shelf fine sediment transport. Mar Geol 430:106360. https://doi.org/10.1016/j.margeo.2020.106360

    Article  Google Scholar 

  • Moura RL, Amado-filho GM, Moraes FC, Brassileiro PS, Salomon PS, Mahiques MM et al (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2:1–12. https://doi.org/10.1126/sciadv.1501252

    Article  CAS  Google Scholar 

  • Nittrouer CA, DeMaster DJ (1986) Sedimentary processes on the Amazon continental shelf: past, present and future research. Continental Shelf Res 6(1–2), 5–30 https://doi.org/10.1016/0278-4343(86)90051

  • Nittrouer C, DeMaster A (1996) D J The Amazon shelf setting: tropicnergetic, and influenced by a large river. Cont Shelf Res 16 5-6 553–573 https://doi.org/10.1016/0278-4343(95)00069-0

    Article  ADS  Google Scholar 

  • Oliveira J, Aguiar C, Cirano W, Genz M, F., de Amorim FN (2018) A climatology of the annual cycle of river discharges into the Brazilian continental shelves: from seasonal to interannual variability. Environ Earth Sci 77(5). https://doi.org/10.1007/s12665-018-7349-y

  • Prestes YO, Silva AC, Jeandel C (2018) Amazon water lenses and the influence of the North Brazil Current on the continental shelf. Cont Shelf Res 160:36–48

    Article  ADS  Google Scholar 

  • Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513(7516), 45–53 https://doi.org/10.1038/nature13636

  • Schott FA, Stramma L, Fischer J (1995) The warm water inflow into the western tropical Atlantic boundary regime, 1994, J Geophys Res 400, 24,745–24,760

  • Schott FA, Fischer J, Stramma L (1998) Transports and pathways of the Upper-Layer circulation in the Western Tropical Atlantic. J Phys Oceanogr v 28:1904–1928

    Article  ADS  Google Scholar 

  • Schott FA, Dengler M, Zantopp R, Stramma L, Fischer J, Brandt P (2005) The shallow and deep western boundary circulation of the South Atlantic at 5°–11°S. J Phys Oceanogr v 35(11):2031–2053

    Article  ADS  Google Scholar 

  • Servain J, Wainer I, McCreary Jr J, Dessier P, A (1999) Relationship between the equatorial and meridional modes of climatic variability in the tropical Atlantic. 26(4):485–488. Geophysical Research Letters10.1029/1999GL900014

  • Silva AC, Araújo M, Bourlès B (2005) Variação Sazonal Da estrutura de massas de água na plataforma continental do Amazonas E área oceânica adjacente. Rev Brasileira Geofís 23(2):145–157. https://doi.org/10.1590/S0102-261X2005000200004

    Article  Google Scholar 

  • Silveira ICA, Miranda LB, Brown WS (1994) On the origins of the North Brazil Current. J Geophys Res v 99:22501–22512

    Article  ADS  Google Scholar 

  • Silveira ICA, Bernardo PS, Lazaneo CZ, Amorim JPM, Borges-Silva M, Martins RC, Santos DMC, Dottori M, Belo WC, Martins RP, Guerra LAA, Moreira DL (2023) Oceanographic conditions of the continental slope and deep waters in Santos Basin: the SANSED cruise (winter 2019). Ocean Coastal Res 71:e23008. https://doi.org/10.1590/2675-2824071.2206icas

    Article  Google Scholar 

  • Soares MO, Teixeira CEP, Bezerra LEA, Paiva SV, Tavares TCL, Garcia TM, Araújo JT, Campos CC, Ferreira SMC, Matthews-Cascon H, Frota A, Mont’alverne TCF, Silva ST, Rabelo EF, Barroso CX, Freitas JEP, Júnior MM, Santana Campelo RP, Santana CS, Macedo Carneiro PB, Meirelles AJ, Santos BA, Oliveira AHB, Horta P, Cavalcante RM (2020) Oil spill in South Atlantic (Brazil): environmental and governmental disaster. Mar Policy 115:103879. https://doi.org/10.1016/j.marpol.2020.103879

    Article  Google Scholar 

  • Soares MO, Teixeira CEP, Bezerra LEA et al (2022) The most extensive oil spill registered in tropical oceans (Brazil): the balance sheet of a disaster. Environ Sci Pollut Res 29:19869–19877. https://doi.org/10.1007/s11356-022-18710-4

    Article  Google Scholar 

  • Stramma L, Rhein M, Brandt P, Dengler M, Böning C, Walter M (2005) Upper ocean circulation in the western tropical Atlantic in boreal fall 2000. 52(2):221–240Deep Sea Research Part I: Oceanographic Research Papers, v

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. In: Wang C, Xie S-P, Carton JA (eds) Earth Climate: The Ocean-Atmosphere Interaction. Am. Geophys. Union, Washington DC, pp 121–142

    Google Scholar 

  • Zhou F, Xue H, Huang D, Xuan J, Ni X, Xiu P, Hao Q (2015) Cross-shelf exchange in the shelf of the East China Sea. J Geophys Res Oceans 120:1545–1572. https://doi.org/10.1002/2014JC010567

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the NOAA Global Drifter Program (NOAA/AOML) for providing hourly location and current velocity collected by satellite-tracked surface drifting buoys and Copernicus Marine Environment Monitoring Service (CMEMS) for providing GLORYS results. Pedro Paulo de Freitas, Mauro Cirano and Carlos Eduardo Peres Teixeira wish to thank the Brazilian National Council for Scientific and Technological Development (CNPq) for the financial support through grants 406506/2022-1, 310902/2018-5, 315289/2021-0, respectively. Vando José Costa Gomes wish to thank the Fundação Amazônia de Amparo a Estudos e Pesquisas (FAPESPA) and the Fundação de Amparo e Desenvolvimento da Pesquisa (FADESP) for the financial support through grants 015/2019-2019/307839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Paulo de Freitas.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on the Coastal Ocean and Shelf Seas Task Team (COSS-TT) meeting, Montreal, Canada, May 2-4, 2023.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Freitas, P.P., Cirano, M., Teixeira, C.E.P. et al. Pathways of surface oceanic water intrusion into the Amazon Continental Shelf. Ocean Dynamics 74, 321–334 (2024). https://doi.org/10.1007/s10236-024-01606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-024-01606-x

Keywords

Navigation