Skip to main content

Redistribution of riverine and rainfall freshwater by the Bay of Bengal circulation

Abstract

We use satellite-derived currents and a Lagrangian approach to investigate the redistribution of the precipitation minus evaporation (P-E) and river freshwater inputs into Bay of Bengal (BoB) by the oceanic circulation. We find a key role of Ekman transport in shaping the BoB freshwater distribution. Until September, the summer monsoon winds induce eastward Ekman transport, which maintains freshwater near its major rivers and rain sources in the northeastern BoB. The winter monsoon Ekman transport strongly contributes to the surface flow in many areas of the interior BoB. This ~ 0.15 m s−1 westward transport overcomes the weaker offshore transport by mesoscale motions and pushes a ~ 40/45% mixture of P-E and Ganges–Brahmaputra freshwater into the East Indian Coastal Current (EICC). In agreement with previous studies, we find that the EICC then transports Ganges–Brahmaputra freshwater southward, allowing the formation of a narrow freshwater tongue or “river in the sea” along the coast east of India in November. Ekman transport thus operates jointly with the EICC to allow the “river in the sea” formation. The EICC is nonetheless a “leaky pipe” as only ~ 22% of the Ganges–Brahmaputra, and ~ 9% of the P-E monsoonal freshwater inputs exit the BoB near Sri Lanka. The winter monsoon anticyclonic circulation in fact brings more rain freshwater from the equatorial Indian Ocean into the southeastern BoB than it exports freshwater through the EICC. As a result, the BoB circulation contributes to a net freshwater gain that amounts to 11% of the local rain and freshwater inputs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

source of rain freshwater in the northeastern BoB is represented on this sketch, but P-E freshwater is in fact traced everywhere, including outside of the BoB). From June onwards, virtual drifters are launched every month. Every particle tracks the freshwater volume received over its 0.025° × 0.025° initial location during the month preceding its release, using as many variables as needed (e.g. a particle near the GB will track separately the freshwater it received from rain and from the GB; these separate freshwater distribution are represented using colours on the sketch). They are then advected forward using satellite estimates of the total surface currents until October. As they are advected they do not acquire, or lose, any further freshwater. Cumulating freshwater released in June, July, August, and September within ¼° bins allows to get the freshwater distribution associated to each source in October

Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-Present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  2. Akhil VP, Durand F, Lengaigne M, Vialard J, Keerthi MG, Gopalakrishna VV, Deltel C, Papa F, de Boyer Montégut C (2014) Processes of surface salinity seasonal cycle in the Bay of Bengal. J Geophys Res Oceans 116:3926–3947. https://doi.org/10.1002/2013JC009632

    Article  Google Scholar 

  3. Akhil VP, M Lengaigne, J Vialard, F Durand, MG Keerthi, AVS Chaitanya, F Papa, VV Gopalakrishna, C de Boyer Montegut (2016) A modeling study of processes controlling the Bay of Bengal sea surface salinity interannual variability. J Geophys Res Oceans, 121, https://doi.org/10.1002/2016JC011662

  4. Akhil VP, J Vialard, M Lengaigne, MG Keerthi, J Boutin, J-l Vergely, F Papa (2020) Bay of Bengal sea surface salinity variability using 8-years of improved SMOS re-processing. Rem Sens Envir, 248, https://doi.org/10.1016/j.rse.2020.111964

  5. Aparna SG, McCreary JP, Shankar D, Vinayachandran PN (2012) Signatures of Indian Ocean Dipole and El Niño-Southern Oscillation events in sea level variations in the Bay of Bengal. J Geophys Res 117:C10012. https://doi.org/10.1029/2012JC008055

    Article  Google Scholar 

  6. Behara A, Vinayachandran PN (2016) An OGCM study of the impact of rain and river water forcing on the Bay of Bengal. J Geophys Res Oceans 121:2425–2446. https://doi.org/10.1002/2015JC011325

    Article  Google Scholar 

  7. Benshila R, F Durand, S Masson, R Bourdalle-Badie, C de Boyer Montégut, F Papa, G Madec (2014) The upper Bay of Bengal salinity structure in a high-resolution model. Ocean Model 74:36–52

    Article  Google Scholar 

  8. Boutin J, Vergely J-L, Marchand S, D'Amico F, Hasson A, Kolodziejczyk Nicolas, Reul Nicolas, Reverdin G, Vialard J (2018) New SMOS sea surface salinity with reduced systematic errors and improved variability. Remote Sensing Of Environment, 214, 115–134. Publisher's official version : https://doi.org/10.1016/j.rse.2018.05.022

  9. Chaitanya AVS, Lengaigne M, Vialard J, Gopalakrishna VV, Durand F, KranthiKumar C, Amrithash S, Suneel V, Papa F, Ravichandran M (2014) Fishermen-operated salinity measurements reveal a “river in the sea” flowing along the east coast of India. BAMS, Online First,. https://doi.org/10.1175/BAMS-D-12-00243.1

    Article  Google Scholar 

  10. Chelton DB, DeSzoeke RA, Schlax MG, El Naggar K, Siwertz N (1998) Geographical variability of the first baroclinic Rossby radius of deformation. J Phys Oceanogr 28(3):433–460

    Article  Google Scholar 

  11. Chelton DB, Schlax MG, Samelson RM (2011) Global observations of non-linear mesoscale eddies. Prog Oceanogr. https://doi.org/10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  12. Chen G, Li Y, Xie Q, Wang D (2018) Origins of eddy kinetic energy in the Bay of Bengal. Journal of Geophysical Research Oceans 123:2097–2115. https://doi.org/10.1002/2017JC013455

    Article  Google Scholar 

  13. Cotté C, d’Ovidio F, Chaigneau A, Lèvy M, Taupier-Letage I, Mate B, Guinet C (2011) Scale-dependent interactions of Mediterranean whales with marine dynamics. Limnol Oceanogr 56(1):219–232. https://doi.org/10.4319/lo.2011.56.1.0219

    Article  Google Scholar 

  14. Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3(6):660–687

    Article  Google Scholar 

  15. de Boyer MC, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. https://doi.org/10.1029/2004JC002378

    Article  Google Scholar 

  16. de Boyer MC, Mignot J, Lazard A, Cravatt S (2007) Control of salinity on the mixed layer depth in the world ocean, Part I: general description. J Geophys Res 112:C06011. https://doi.org/10.1029/2006JC003953

    Article  Google Scholar 

  17. Decharme B, Delire C, Minvielle M, Colin J, Vergnes J‐P, Alias A, et al. (2019) Recent changes in the ISBA-CTRIP land surface system for use in the CNRM-CM6 climate model and in global off-line hydrological applications. Journal of Advances in Modeling Earth Systems, 11.https://doi.org/10.1029/2018MS001545

  18. d’Ovidio F, Isern-Fontanet J, López C, Hernández-García E, García-Ladona E. (2009) Comparison between Eulerian diagnostics and finite-size Lyapunov exponents computed from altimetry in the Algerian basin. Deep-Sea Res, Pt. I, 56, 15–31, 2009. 786, 788.

  19. Dibarboure D et al (2011) Jason-2 in DUACS: Up- dated system description, first tandem results and impact on processing and products. Mar Geod 34(3–4):214–241

    Article  Google Scholar 

  20. Durand F, Shetye SR, Vialard J, Shankar D, Shenoi SSC, Ethe C, Madec G (2004) Impact of temperature inversions on SST evolution in the South-Eastern Arabian Sea during the pre-summer monsoon season. Geophys Res Lett 31(1):L01305. https://doi.org/10.1029/2003GL018906

    Article  Google Scholar 

  21. Durand F, Shankar D, de Boyer MC, Shenoi SSC, Blanke B, Madec G (2007) Modeling the barrier-layer formation in the southeastern Arabian Sea. J Clim 20(10):2109–2120

    Article  Google Scholar 

  22. Durand F, Shankar D, Birol F, Shenoi SSC (2009) Spatiotemporal structure of the East India Coastal Current from satellite altimetry. J Geophys Res 114:C02013. https://doi.org/10.1029/2008JC004807

    Article  Google Scholar 

  23. Fekete Balázs M, Vörösmarty Charles J, Grabs Wolfgang (2002) High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem Cycles 16(3):1042. https://doi.org/10.1029/1999GB001254

    Article  Google Scholar 

  24. Fournier S, Vialard J, Lengaigne M, Lee T, Gierach MM, Chaitanya AVS (2017a) Modulation of the Ganges-Brahmaputra river plume by the Indian Ocean dipole and eddies inferred from satellite observations. Journal of Geophysical Research Oceans 122:9591–9604. https://doi.org/10.1002/2017JC013333

    Article  Google Scholar 

  25. Fournier S, Vandemark D, Gaultier L, Lee T, Jonsson B, Gierach MM (2017b) Interannual variation in offshore advection of Amazon-Orinoco plume waters: observations, forcing mechanisms, and impacts. Journal of Geophysical Research: Oceans, 122. https://doi.org/10.1002/2017JC013103

  26. Gopalakrishna VV et al (2002) Upper ocean stratification and circulation in the northern Bay of Bengal during southwest monsoon of 1991. Cont Shelf Res 22(5):791–802

    Article  Google Scholar 

  27. Gordon AL, Shroyer EL, Mahadevan A, Sengupta D, Freilich M (2016) Bay of Bengal: 2013 northeast monsoon upper-ocean circulation. Oceanography 29(2):82–91. https://doi.org/10.5670/oceanog.2016.41

    Article  Google Scholar 

  28. Han W, McCreary JP, Kohler KE (2001) Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. J Geophys Res 106:6895–6916

    Article  Google Scholar 

  29. Hareeshkumar PV, Matthew B, Ramesh Kumar MR, Rao AR, Jagadesh PSV, Radhakrishnan KG, Shyni TN (2013) ‘Thermohaline front’ off the east coast of India and its generating mechanism. Ocean Dyn 63:1175–1180. https://doi.org/10.1007/s10236-013-0652-y

    Article  Google Scholar 

  30. Hormann V, Centurioni LR, Gordon AL (2019) Freshwater export pathways from the Bay of Bengal. Deep Sea Research Part II: Topical Studies in Oceanography, 104645.

  31. Huffman GJ, et al. (2007) The TRMM multisatellite precipitation analysis: quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor, 8, 38 – 55, 10.1175 /JHM560.1.

  32. Jensen TG (2001) Arabian Sea and Bay of Bengal exchange of salt and tracers in an ocean model. Geophys Res Lett 28:3967–3970

    Article  Google Scholar 

  33. Joel S, Christophe M, Garcon V (2013) On the global estimates of geostrophic and Ekman surface currents. Limnology and Oceanography: Fluids and Environments 3(2013):1–20. https://doi.org/10.1215/21573689-2071927

    Article  Google Scholar 

  34. Krishnamohan KS, J Vialard, M Lengaigne, S Masson, G Samson, S Pous, S Neetu, F Durand, S Shenoi, G Madec (2019) Is there an effect of Bay of Bengal salinity on the Northern Indian Ocean climatological rainfall?, Deep Sea Research Part II: Topical Studies in Oceanography, Volume 166, 2019, Pages 19-33, ISSN 0967-0645. https://doi.org/10.1016/j.dsr2.2019.04.003.

  35. Lumpkin R, Centurioni L, Perez RC (2016) Fulfilling observing system implementation requirements with the global drifter array. J Atmos Oceanic Tech 33:685–695. https://doi.org/10.1175/JTECH-D-15-0255.1

    Article  Google Scholar 

  36. Mahadevan A, Spiro Jaeger G, Freilich M, Omand M, Shroyer EL, Sengupta D (2016) Freshwater in the Bay of Bengal: Its fate and role in air-sea heat exchange. Oceanography 29(2):72–81. https://doi.org/10.5670/oceanog.2016.40

    Article  Google Scholar 

  37. Masson S, Luo J-J, Madec G, Vialard J, Durand F, Gualdi S, Guilyardi E, Behera S, Delecluse P, Navarra A, Yamagata T (2005) Impact of barrier layer on winter-spring variability of the South-Eastern Arabian Sea. Geophys Res Lett 32:L07703. https://doi.org/10.1029/2004GL021980

    Article  Google Scholar 

  38. McCreary JP, Han W, Shankar D, Shetye SR (1996) Dynamics of the East India Coastal Current: 2. Numerical Solutions J Geophys Res 101:13993–14010. https://doi.org/10.1029/96JC00560

    Article  Google Scholar 

  39. Morrow R, Fu LL, D’Ovidio F, Farrar JT (2019) Scientists invited to collaborate in satellite mission’s debut. Amer. Geophys. Union, Eos, Trans, p 100

    Google Scholar 

  40. Neetu S, Lengaigne M, Vincent EM, Vialard J, Madec G, Samson G, Ramesh Kumar MR, Durand F (2012) Influence of upper-ocean stratification on tropical cyclone induced surface cooling in the Bay of Bengal. J Geophys Res 117:C12020. https://doi.org/10.1029/2012JC008433

    Article  Google Scholar 

  41. Neetu S, Lengaigne M, Vialard J, Samson G, Masson S, Krishnamohan KS, Suresh I (2019) Premonsoon/postmonsoon Bay of Bengal tropical cyclones intensity: role of air-sea coupling and large-scale background state. Geophys Res Lett 45:2149–2157

    Article  Google Scholar 

  42. Papa F, Bala SK, Pandey RK, Durand F, Gopalakrishna VV, Rahman A, Rossow WB (2012) Ganga-Brahmaputra river discharge from Jason-2 radar altimetry: an update to the long-term satellite-derived estimates of continental freshwater forcing flux into the Bay of Bengal. J Geophys Res 117:C11021. https://doi.org/10.1029/2012JC008158

    Article  Google Scholar 

  43. Pant V, Girishkumar MS, Udaya Bhaskar TVS, Ravichandran M, Papa F, Thangaprakash VP (2015) Observed interannual variability of near-surface salinity in the Bay of Bengal. J Geophys Res Oceans 120:3315–3329. https://doi.org/10.1002/2014JC010340

    Article  Google Scholar 

  44. Prasanna Kumar S, PM Muraleedharan, TG Prasad, M Gauns, N Ramaiah, SN de Souza, S Sardesai, M Madhupratap (2002) Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophys Res Lett 29(24):2235. https://doi.org/10.1029/2002GL016013

    Article  Google Scholar 

  45. Praveen Kumar B, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: Air-sea fluxes for the global tropical oceans-description and evaluation against observations. Clim Dyn 38:1521–1543

    Article  Google Scholar 

  46. Raj RP (2017) Surface velocity estimates of the North Indian Ocean from satellite gravity and altimeter missions. Int J Remote Sens 38(1):296–313

    Article  Google Scholar 

  47. Rao RR, Sivakumar R (2003) Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. J Geophys Res 108(C1):3009. https://doi.org/10.1029/2001JC00907

    Article  Google Scholar 

  48. Rao SA, Behera SK, Masumoto Y, Yamagata T (2002) Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea Res, Part II 49(7–8):1549–1572. https://doi.org/10.1016/S0967-0645(01)00158-8

    Article  Google Scholar 

  49. Rao SA, Saha SK, Pokhrel S, Sundar D, Dhakate AR, Mahapatra S et al (2011) Modulation of SST, SSS over northern Bay of Bengal on ISO time scale. J Geophys Res 116:C09026. https://doi.org/10.1029/2010JC006804

    Article  Google Scholar 

  50. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401(6751):360–363

    Google Scholar 

  51. Sandeep KK, Pant V, Girishkumar MS, Rao AD (2018) Impact of riverine freshwater forcing on the sea surface salinity simulations in the Indian Ocean. J Mar Syst 185:40–58. https://doi.org/10.1016/j.jmarsys.2018.05.002

    Article  Google Scholar 

  52. Sandeep KK and Pant V (2019) Riverine freshwater plume variability in the Bay of Bengal using wind sensitivity experiments. Deep Sea Research Part II: Topical Studies in Oceanography, 168, 104649.

  53. Sarma VVSS, Rao GD, Viswanadham R, Sherin CK, Salisbury J, Omand MM et al (2016) Effects of freshwater stratification on nutrients, dissolved oxygen, and phytoplankton in the Bay of Bengal. Oceanography 29(2):222–231

    Article  Google Scholar 

  54. Schott FA, McCreary JP (2001) The monsoon circulation of the Indian Ocean. Prog Oceanogr 51(1):1–123

    Article  Google Scholar 

  55. Sengupta D, Bharath Raj GN, Shenoi SSC (2006) Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean. Geophys Res Lett 33:L22609. https://doi.org/10.1029/2006GL027573

    Article  Google Scholar 

  56. Sengupta D, Bharath RG, Anitha DS (2008) Cyclone-induced mixing does not cool SST in the post-monsoon north Bay of Bengal. Atmos Sci Lett 9:1–6. https://doi.org/10.1002/asl.162

    Article  Google Scholar 

  57. Sengupta D, Bharath Raj GN, Ravichandran M, Sree Lekha J, Papa F (2016) Near-surface salinity and stratification in the north Bay of Bengal from moored observations. Geophys Res Lett 43:4448–4456. https://doi.org/10.1002/2016GL068339

    Article  Google Scholar 

  58. Shankar D, McCreary JP, Han W, Shetye SR (1996) Dynamics of the East India Coastal Current 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. J Geophys Res 101:13975–13991. https://doi.org/10.1029/96JC00559

    Article  Google Scholar 

  59. Shankar D, Vinayachandran PN, Unnikrishnan AS (2002) The monsoon currents in the north Indian Ocean. Prog Oceanogr 52(1):63–120

    Article  Google Scholar 

  60. Sherin VR, Durand F, Gopalkrishna VV, Anuvinda S, Chaitanya AVS, Bourdallé-Badie R, Papa F (2018) Signature of Indian Ocean Dipole on the western boundary current of the Bay of Bengal. Deep Sea Res Part I 136:91–106

    Article  Google Scholar 

  61. Shetye SR, Shenoi SSC, Gouveia AD, Michael GS, Sundar D (1991) Nampoothiri G (1991) “Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon.” Cont Shelf Res 11(11):1397–1408

    Article  Google Scholar 

  62. Shetye SR, Gouveia AD, Shankar D, Shenoi SSC, Vinayachandran PN, Sundar D, Michael GS, Nampoothiri G (1996) Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. J Geophys Res 101(C6):14011–14026

    Article  Google Scholar 

  63. Sree Lekha J, Buckley JM, Tandon A, Sengupta D (2018) Subseasonal dispersal of freshwater in the northern Bay of Bengal in the 2013 summer monsoon season. Journal of Geophysical Research: Oceans, 123. https://doi.org/10.1029/2018JC014181

  64. Suresh I, Vialard J, Lengaigne M, Izumo T, Parvathi V, Muraleedharan PM (2018) Sea level interannual variability along the west coast of India. Geophys Res Lett 45:12440–12448. https://doi.org/10.1029/2018GL080972

    Article  Google Scholar 

  65. Thadathil P, Suresh I, Gautham S, Prasanna Kumar S, Lengaigne M, Rao RR, Neetu S, Hegde A (2016) Surface layer temperature inversion in the Bay of Bengal: Main characteristics and related mechanisms. J Geophys Res Oceans 121:5682–5696. https://doi.org/10.1002/2016JC011674

    Article  Google Scholar 

  66. Vinayachandran PN, Murty VSN, Ramesh Babu V (2002) Observations of barrier layer formation in the Bay of Bengal during summer monsoon. J Geophys Res 107(C12):8018. https://doi.org/10.1029/2001JC000831

    Article  Google Scholar 

  67. Vinayachandran PN, Shankar D, Kurian J, Durand F, Shenoi SSC (2007) Arabian Sea mini warm pool and the monsoon onset vortex. Current Science, 203–214.

  68. Vinayachandran PN, Shankar D, Vernekar S, Sandeep KK, Amol P, Neema CP, Chatterjee A (2013) A summer monsoon pump to keep the Bay of Bengal salty. Geophys Res Lett 40(9):1777–1782

    Article  Google Scholar 

  69. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401(6751):356–360. https://doi.org/10.1038/43848

    Article  Google Scholar 

  70. Wijesekera HW, Shroyer E, Tandon A, Ravichandran M, Sengupta D, Jinadasa SUP et al (2016) ASIRI: an Ocean-Atmosphere Initiative for Bay of Bengal. Bull Am Meteor Soc 97(10):1859–1884. https://doi.org/10.1175/bams-d-14-00197.1

    Article  Google Scholar 

  71. Wilson EA, Riser SC (2016) An assessment of the seasonal salinity budget for the upper Bay of Bengal. J Phys Oceanogr 46(5):1361–1376

    Article  Google Scholar 

  72. Yoav L, d’Ovidio F, Koren Ilan (2018) A satellite-based Lagrangian view on phytoplankton dynamics. Annu Rev Mar Sci 10:99–11. https://doi.org/10.1146/annurev-marine-121916-063204

    Article  Google Scholar 

Download references

Acknowledgements

AVS Chaitanya’s PhD was supported by an IRD (Institut de Recherche pour le Développement) “ARTS” Ph.D. grant. He thanks CSIR-NIO (National Institute of Oceanography), Goa, India, and LOCEAN, Paris, France, for hosting him during his Ph. D. He also thank Dr. V. V. Gopalakrishna for his scientific support. GEKCO current data is provided by Joel Sudre from CNRS/LEGOS, Toulouse upon request (http://www.legos.obs-mip.fr/members/sudre/gekco_form). All other data that is used in the paper is accessible on web repositories (SVP-drifter: https://www.aoml.noaa.gov/phod/gdp/; TropFlux: https://incois.gov.in/tropflux/data_access.jsp; TRMM: http://disc.sci.gsfc.nasa.gov/precipitation; Fekete-river discharge: http://www.grdc.sr.unh.edu/html/Data/index.html). M. Lengaigne thank IRD for supporting a long stay at the CSIR-NIO in Goa, India. J. Vialard thank CSIR-NIO for granting him an “Adjunct Scientist” position for a period of three years. The Lagrangian code we used is included in the SPASSO software package, which is freely available here: https://people.mio.osupytheas.fr/~doglioli/spasso.htm.

Funding

This research was supported under the SARAL/AltiKa project, funded by CNES (Centre National d’Études Spatiales).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Akurathi Venkata Sai Chaitanya.

Additional information

Responsible Editor: Helen Phillips.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chaitanya, A.V.S., Vialard, J., Lengaigne, M. et al. Redistribution of riverine and rainfall freshwater by the Bay of Bengal circulation. Ocean Dynamics 71, 1113–1139 (2021). https://doi.org/10.1007/s10236-021-01486-5

Download citation

Keywords

  • Freshwater
  • Bay of Bengal
  • Oceanic circulation
  • Satellite altimetry
  • Mesoscale eddies
  • Ekman transport
  • Lagrangian approach