Skip to main content
Log in

The hydrodynamic theory of the Cyprus Eddy

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

An analytical solution to the problem of the Cyprus warm core Eddy generation over the bottom topography non-axisymmetric perturbations in the broad area of the Eratosthenes seamount in the Levantine Basin is obtained. The solution is based on the application of barotropic and baroclinic ocean approximations, with a lateral eastward flow. The obtained results demonstrate the generation of a dipolar vortex structure over the complicated topography of the Eratosthenes seamount broad area with the generation of the anticyclonic Cyprus Eddy and, at its northwest periphery, of an additional cyclonic eddy which is periodically observed from satellites remote sensing SST. The seasonal vertical stratification appears to be responsible for the generation and evolution of the examined mesoscale eddies.  The eddies are truncated Taylor-Hogg cones, tapering towards the sea surface. In this configuration, the cones axes may significantly tilt. Moreover, the water movement within the eddies generated by the dipolar topographic system is examined based on the eddies helicity. The cold waters nature of the cyclonic eddy is explained by the formation of upwelling regions, while on the contrary, the warm waters nature of the main anticyclonic eddy is explained by the downwelling of warm surface waters surrounding the Cyprus Eddy. Finally, the Contour Dynamics Method (CDM) is applied  to analyze  the interaction of the Cyprus Eddy with vortex patches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

References

  • Abudaya M, Hararah S (2013) Spatial and temporal variations in water quality along the coast of gaza strip. J Envir Earth Sci 3:53–63

    Google Scholar 

  • Akpinar A, Yilmaz E, Fach B, Salihoglu B (2016) Physical oceanography of the Eastern Mediterranean Sea. In: Turan K, Salihoglu B, Ozbek EO, Ozturk B (eds) The Turkish Part of the Mediterranean Sea. Turkish Marine Research Foundation, Turkey, pp 1–14

    Google Scholar 

  • Alhammoud B, Béranger KK, Mortier L, Crépon M, Dekeyser I (2005) Surface circulation of the Levantine Basin: comparison of model results with observations. Progr Oceanogr 66:299–320

    Google Scholar 

  • Beckmann A, Haidvogel DB (1993) Numerical simulation of flow around tall isolated seamount. Part I: problem formulation and model accuracy. J Phys Oceanog 23(8):1736–1753

    Google Scholar 

  • Boehlert GW, Genin A (1987) A review of the effect of seamounts on biological processes. In: Keating BH, Fryer P, Batiza R, Boehlert GW (eds) Seamounts, Islands and Atolls. American Geophysical Union 43, Washington, pp 319–334

    Google Scholar 

  • Boyer DL, Chabert d’Hieres G, Didelle H, Verron J, Chen RR, Tao L (1991) Laboratory simulation of tidal rectification over seamounts: homogeneous model. J Phys Oceanog 21(10):1559–1579

    Google Scholar 

  • Brenner S (1989) Structure and evolution of warm core eddies in the eastern Mediterranean Levantine Basin. J Geophys Res 94:12.593–12.602

    Google Scholar 

  • Brenner S, Rozentraub Z, Bishop J, Krom M (1991) The mixed-layer/thermocline cycle of a persistent warm core eddy in the eastern Mediterranean. Dyn Atmos Oceans 15:457–476

    Google Scholar 

  • Brenner S (1993) Long-term evolution and dynamics of a persistent warm core eddy in the Eastern Mediterranean Sea. Deep-Sea Res II 40:1193–1206

    Google Scholar 

  • Chen C, Beardsley RC (1995) A numerical study of stratified tidal rectification over finite-amplitude banks. Part I: symmetric banks. J Phys Oceanog 25(9):2090–2110

    Google Scholar 

  • Chen C, Beardsley RC, Limeburner R (1995) A numerical study of stratified tidal rectification over finite-amplitude banks. Part II: Georges Bank. J Phys Oceanog 25(9):2111–2128

    Google Scholar 

  • Dritschel DG (1986) The nonlinear evolution of rotating configurations of uniform vorticity. J Fluid Mech 172:157–182

    Google Scholar 

  • Dritschel DG (1988) Contour surgery: a topological reconnection scheme for extended integrations using contour dynamics. J Comput Phys 77(1):240–266

    Google Scholar 

  • Groom S, Herut B, Brenner S, Zodiatis G, Psarra S, Kress N, Krom MD, Law CS, Drakopoulos P (2005) Satellite-derived spatial and temporal biological variability in the Cyprus Eddy. Deep-Sea Res II 52:2990–3010

    Google Scholar 

  • Hamad N, Millot C, Taupier-Letage I (2006) The surface circulation in the eastern basin of the Mediterranean Sea. Sci Mar 70(3):457–503

    Google Scholar 

  • Hecht A, Robinson A, Pinardi N (1998) Currents, water masses, eddies, and jets in the Mediterranean Levantine Basin. J Phys Oceanogr 8:1320–1353

    Google Scholar 

  • Horton C, Clifford M, Schmitz J (1997) A real-time oceanographic nowcast/forecast system for the Mediterranean Sea. J Geophys Res 102(C11):25123–25156

    Google Scholar 

  • Huppert HE (1975) Some remarks on the initiation of inertial Taylor columns. J Fluid Mech 67:397–412

    Google Scholar 

  • Huppert HE, Bryan K (1976) Topographically generated eddies. Deep Sea Res 23(8):655–679

    Google Scholar 

  • Johnson ER (1977) Stratified Taylor columns on a beta-plane. Geophys Astrophys Fluid Dyn 9(1):159–177

    Google Scholar 

  • Johnson ER (1978) Trapped vortices in rotating flow. J Fluid Mech 86(2):209–224

    Google Scholar 

  • Kitani K, Shimazaki K (1971) On the hydrography of the northern part of the Okhotsk Sea in summer. Bull Fac Fish Hokkaido Univ 12:231–242

    Google Scholar 

  • Koshel KV, Ryzhov EA, Zyryanov VN (2014) A modification of the invariant imbedding methods for a singular boundary value problem. Commun Nonlinear Sci Numer Simulat 19:459–470

    Google Scholar 

  • Kozlov VF (1968) The use of one-parameter models to the study of density thermohaline circulation in the ocean of finite depth. Izv USSR Academy of Sciences Atmos Ocean Phys 4(6):622–633

    Google Scholar 

  • Kozlov VF, Sokolovskiy MA (1981) Meander of a barotropic zonal current crossing a bottom ridge (periodic regime). Oceanology 21(6):684–687

    Google Scholar 

  • Kozlov VF (1983) The method of contour dynamics in model problems of the ocean topographic cyclogenesis. Izvestiya Atmos Ocean Phys 19(8):635–640

    Google Scholar 

  • Kozlov VF (1984) Models of the topographic vortices in ocean. Nauka 200 (In Russian)

  • Kozlov VF, Makarov VG (1985) Simulation of the instability of axisymmetric vortices using the contour dynamics method. Fluid Dyn 20(1):28–34

    Google Scholar 

  • Kozlov VF, Makarov VG, Sokolovskiy MA (1986) Numerical model of the baroclinic instability of axially symmetric eddies in two-layer ocean. Izvestiya Atmos Ocean Phys 22(8):674–678

    Google Scholar 

  • Kozlov VF (1994) Geophysical hydrodynamics of vortical patches. Phys Oceanogr 6(1):25–34

    Google Scholar 

  • Krom MD, Woodward EMS, Herut B, Kress N, Carbo P, Mantoura RFC, Spyres G, Thingstad TF, Wassmann P, Wexels-Riser C, Kitidis V, Law CS, Zodiatis G (2005) Nutrient cycling in the southeast Levantine Basin of the eastern Mediterranean: results from a phosphorus starved system. Deep-Sea Res II 52:2879–2896

    Google Scholar 

  • Law C, Abraham E, Woodward E, Liddicoat M, Fileman T, Thingstad T, Kitidis V, Zohary T (2005) The fate of phosphate in an in situ Lagrangian addition experiment in the Eastern Mediterranean. Deep-Sea Research II 52:2911–2927

    Google Scholar 

  • Lin SJ (1992) Contour dynamics of tornado-like vortices. J Atmos Sci 49(18):1745–1756

    Google Scholar 

  • Makarov VG (1996) Numerical simulation of the formation of tripolar vortices by the method of contour dynamics. Izvestiya Atmos Ocean Phys 32(1):40–49

    Google Scholar 

  • Makarov VG, Sokolovskiy MA, Kizner Z (2012) Doubly symmetric finite-core heton equilibria. J Fluid Mech 708:397–417

    Google Scholar 

  • McCartney MS (1975) Inertial Taylor columns on a beta-plane. J Fluid Mech 68:71–95

    Google Scholar 

  • Menna M, Poulain PM, Zodiatis G, Gertman I (2012) On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data. Deep Sea Res I 65:46–58

    Google Scholar 

  • Menna M, Gerin R, Notarstefano G, Mauri E, Bussani A, Pacciaroni M, Poulain PM (2021) On the circulation and thermohaline properties of the Eastern Mediterranean Sea. Front Mar Sci doi. https://doi.org/10.3389/fmars.2021.671469

  • Monin AS, Neiman VG, Filyushkin BN (1970) Density stratification in the ocean. Dokl Akad Nauk USSR 191:1277–1279

    Google Scholar 

  • Nielsen JN (1912) Hydrography of the Mediterranean and adjacent water. In: Report of the Danish Oceanographic expedition 1908-1910. Copenhagen, 72–191

  • Ovchinnikov IM (1966) Circulation in the surface and intermediate layers of the Mediterranean Oceanology. Oceanology 6:48–57

  • Ovchinnikov IM, Moskalenko LV, Neglyad KV, Osadchiy AS, Fedoseyev AF, Krishova VG, Voytova KV (1976) Hydrology of the Mediterranean Sea. Hydrometeoizdat, Leningrad

    Google Scholar 

  • Overman EA II, Zabusky NJ (1982) Evolution and merger of isolated vortex structures. Phys Fluids 25(8):1297–1305

    Google Scholar 

  • Özsoy E, Hecht A, Unluata U (1989) Circulation and hydrography of the Levantine Basin–results of POEM coordinated experiments 1985–1986. Prog Oceanogr 22:125–170

    Google Scholar 

  • Özsoy E, Hecht A, Unluata U, Brenner S, Oguz T, Bishop J, Latif MA, Rozentraub Z (1991) A review of the Levantine Basin circulation and variability during 1985–1988. Dyn Atm Ocean 15:421–456

    Google Scholar 

  • Özsoy E (1993) A synthesis of Levantine Basin circulation and hydrography, 1985–1990. Deep-Sea Res II 40(6):1075–1119

    Google Scholar 

  • Perera MJAM, Fernando HJS, Boyer DL (1995) Mixing induced by oscillatory stratified flow past a right-circular cylinder. J Fluid Mech 284:1–21

    Google Scholar 

  • Pinardi N, Arneri E, Crise A, Ravaioli M, Zavatarelli M (2006) The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. The Sea 14:1245–1331

    Google Scholar 

  • Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S (2015) Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog Oceanogr 132:318–332. https://doi.org/10.1016/j.pocean.2013.11.003

    Article  Google Scholar 

  • Reinaud JN, Sokolovskiy MA, Carton X (2017) Geostrophic tripolar vortices in a two-layer fluid: Linear stability and nonlinear evolution of equilibria. Phys Fluids 29:036601

    Google Scholar 

  • Reinaud JN (2020) Self-similar collapse of three geophysical vortices. Geophys Astrophys Fluid Dyn 114(6). https://doi.org/10.1080/03091929.2020.1828402

  • Robinson AR, Hecht A, Pinardi N, Bishop Y, Leslie WG, Rosentroub Z, Mariano AJ, Brenner S (1987) Small synoptic/mesoscale eddies: the energetic variability of the Eastern Levantine Basin. Nature 327(6118):131–134

    Google Scholar 

  • Robinson AR, Golnaraghi M, Leslie WG, Artegiani WG, Hecht A, Lazzoni A, Michelato A, Sansone E, Theocharis A, Unluata U (1991) The Eastern Mediterranean general circulation: features, structures, and variability. Dyn Atm Oceans 15:215–240

    Google Scholar 

  • Robinson AR, Malanotte-Rizzoli P, Hecht A, Michelato A, Roether W, Theocharis A, Ünlüata Ü, Pinardi N, Artegiani A, Bergamasco A, Bishop J, Brenner S, Christianidis S, Gacic M, Georgopoulos D, Golnaraghi M, Hausmann M, Junghaus HG, Lascaratos A et al (1992) General circulation of the Eastern Mediterranean. Earth Sci Rev 32:285–309

    Google Scholar 

  • Robinson AR, Theocharis A, LascaratosA LWG (2001) Mediterranean Sea circulation. In: Encyclopedia of Ocean. Sci Academic Press Ltd, London, pp 1689–1706

    Google Scholar 

  • Ryzhov EA, Sokolovskiy MA (2016) Interaction of two-layer vortex pair with a submerged cylindrical obstacle in a two-layer rotating fluid. Phys Fluids 28:056602

    Google Scholar 

  • Schroeder K, Garcìa-Lafuente J, Josey SA, Artale V, Nardelli BB, Carrillo A, Gacic M, Gasparini GP, Herrmann M, Lionello P, Ludwig W, Millot C, Özsoy E, Pisacane G, Sánchez-Garrido JC, Sannino G, Santoleri R, Somot S, Struglia M et al (2012) Circulation of the Mediterranean Sea and its variability. In: Lionello P (ed) Climate of the Mediterranean Region. Elsevier, Amsterdam, 592. https://doi.org/10.1016/B978-0-12-416042-2.00003-3

    Chapter  Google Scholar 

  • Sokolovskiy MA (1991) Modeling triple-layer vortical motions in the ocean by the Contour Dynamics Method. Izvestiya Atmos Ocean Phys 27(5):380–388

    Google Scholar 

  • Sokolovskiy MA, Zyryanov VN, Davies PA (1998) On the influence of submerged obstacle on a barotropic tidal flow. Geophys Astrophys Fluid Dyn 88:1–30

    Google Scholar 

  • Sokolovskiy MA, Verron J (2000) Finite-core hetons: stability and interactions. J Fluid Mech 423:127–154

    Google Scholar 

  • Sokolovskiy MA, Carton XJ (2010) Baroclinic multipole formation from heton interaction. Fluid Dyn Res 42(4):045501

    Google Scholar 

  • Sokolovskiy MA, Verron J (2014) Dynamics of vortex structures in a stratified rotating fluid. Springer 47:382

  • Sokolovskiy MA, Carton XJ, Filyushkin BN (2020) Mathematical modeling of vortex interaction using a three-layer quasi-geostrophic model. Part 2: finite-core-vortex approach and oceanographic application. Mathematics 8(8):1267. https://doi.org/10.3390/math8081267

    Article  Google Scholar 

  • Taylor GI (1923) Experiments on the motion of solid bodies in rotating fluids. Proc Roy Soc Lond 104:213–218

    Google Scholar 

  • Verron J (1986) Topographic eddies in temporary varying oceanic flows. Geophys Astrophys Fluid Dynam 35:257–271

    Google Scholar 

  • Viúdez A, Dritschel DG (2003) Vertical velocity in mesoscale geophysical flows. J Fluid Mech 483:199–223

    Google Scholar 

  • Viúdez A, Dritschel DG (2004) Potential vorticity and the quasigeostrophic and semigeostrophic mesoscale vertical velocity. J Phys Oceanogr 34:865–887

    Google Scholar 

  • Wu HM, Overman EA II, Zabusky NJ (1984) Steady-state solutions of the Euler equations: rotating and translating V-states with limiting cases. I. Numerical algorithms and results. J Comput Phys 53(1):42–71

    Google Scholar 

  • Waugh DW (1992) The efficiency of symmetric vortex merger. Phys Fluids A 4(8):1745–1758

    Google Scholar 

  • Zabusky NJ, Hughes MH, Roberts KV (1979) Contour dynamics for Euler equations in two dimensions. J Comput Phys 30(1):96–106

    Google Scholar 

  • Zhang X, Boyer DL (1993) Laboratory study of rotating, stratified, oscillatory flow over a seamount. J Phys Oceanog 23(6):1122–1141

    Google Scholar 

  • Zodiatis G, Theodorou A, Demetropoulos A (1998) Hydrography and circulation south of Cyprus in late summer 1995 and in spring 1996. Oceanol Acta 21(3):447–458

    Google Scholar 

  • Zodiatis G, Drakopoulos P, Brenner S, Groom S (2005) Variability of the Cyprus warm core Eddy during the CYCLOPS project. Deep-Sea Res 52(2):2897–2910

    Google Scholar 

  • Zodiatis G, Lardner R, Hayes DR, Georgiou G, Sofianos S, Skliris N, Lascaratos A (2008) Operational Ocean forecasting in the Eastern Mediterranean: implementation and evaluation. Ocean Sci 4:31–47

    Google Scholar 

  • Zodiatis G, Hayes D, Gertman I, Samuel-Rhodes Y (2010) The Cyprus warm eddy and the Atlantic water during the CYBO cruises (1995-2009). Rapp Comm Int de la Mer Medit 39:202

    Google Scholar 

  • Zodiatis G, Hayes D, Gertman I, Poulain PM, Menna M, Nicolaidis A (2013) On the main flow features of the SE Levantine (CYBO cruises 1995–2012). Geophys Res Abstr 15, EGU2013e9861

  • Zodiatis G, Gertman I, Poulain PM, Menna M (2015) The general circulation in the SE Levantine. PERSEUS Conference Proceedings: Integrated Marine Research in the Mediterranean and Black Sea, Brussels, pp 231–232

    Google Scholar 

  • Zodiatis G, Gertman I, Poulain PM, Menna M, Sofianos S (2016) Two decades of monitoring and forecasting of the circulation in the Levantine (1995–2016). 41 CIESM Congress Proceedings, Kiel, Rapp Comm int Mer Médit 41: 79

  • Zyryanov VN (1985) Theory of steady ocean currents. Gidrometeoizdat: 248 (in Russian)

  • Zyryanov VN (1995) Topographic eddies in sea currents dynamics. IWP RAS: 240 (in Russian)

  • Zyryanov VN (2006) Topographic eddies in a stratified ocean. Regular and Chaotic Dynamics 11(4):491–521

    Google Scholar 

  • Zyryanov VN (2009) Secondary toroidal Taylor vortices above bottom perturbations in a rotating fluid. Doklady Physics 54(7):338–347

    Google Scholar 

  • Zyryanov VN (2011) Secondary toroidal vortices above seamounts. J Marine Res 69(2–3):463–481

    Google Scholar 

Download references

Acknowledgements

This work was carried out in the frame of the Program No. 0147-2019-0001 (State Registration No. AAAA-A18-118022090056-0). VME and VNZ were supported by the Russian Foundation for Basic Research (RFBR project 19-05-00522). We thank Dr. George Zodiatis from the University of Cyprus for the kindly provided array of the bottom topography in the Eastern Mediterranean Sea. Moreover, we thank the Reviewers for their constructive comments in improving the results of the paper. VME and MAS sadly inform the readers that our friend and colleague Prof. Valery Zyryanov passed away on February 10, 2021, and, unfortunately, will not see the article in its final form.

Author information

Authors and Affiliations

Authors

Additional information

Responsible Editor: Emil Vassilev Stanev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorova, V.M., Zyryanov, V.N. & Sokolovskiy, M.A. The hydrodynamic theory of the Cyprus Eddy. Ocean Dynamics 72, 1–20 (2022). https://doi.org/10.1007/s10236-021-01484-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-021-01484-7

Keywords

Navigation