Skip to main content

Advertisement

Log in

Impact of Caribbean Anticyclones on Loop Current variability

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The Loop Current evolves in the Gulf of Mexico as a continuation of the Yucatan Current and its upstream Caribbean Current, entering through the Yucatan Channel from the Northwestern Caribbean Sea. The Loop Current system contains the associated rich eddy field and together with the Florida Current controls the exit of the Gulf Stream toward the Atlantic Ocean and its downstream evolution along the US coasts. We examine the consequences of this natural connectivity, focusing on the dynamical synergy of mesoscale circulation processes downstream (north) of the Yucatan Channel (Gulf interior, dominated by Loop Current variability) and upstream (south) of the Yucatan Channel (Northwestern Caribbean Sea). We focus on Caribbean Anticyclones, their characteristics and evolution as they feed into the Loop Current system. We employ observational (satellite altimetry and drifters) and simulated (ocean numerical model) data for a 9-year period (2010–2018). Several metrics related to the Loop Current (maximum latitude, axis), Yucatan Current (zonal position), and Caribbean Sea mesoscale circulation (vorticity) are used to quantify how the accurate representation of Caribbean eddies can improve the prediction of the Loop Current. The numerical results, the altimetry observational fields, and the respective drifter trajectories show a strong relationship between the Caribbean Anticyclones and the Loop Current variability, both at the base of the Loop Current (position of the Yucatan Current) and within the Gulf interior (northern Loop Current position and orientation). During retracted Loop Current periods, the evolution of anticyclones in the Yucatan Channel plays a role on the eastward tilt of the Loop Current axis and the zonal shift of the Yucatan Current close to the island of Cuba. Lagrangian analyses confirmed that coherent anticyclonic flux across the Yucatan Channel usually evolves closer to Cuba and is associated with retracted Loop Current phases. A lag of 5 to 10 days between the anticyclonic vorticity in the northwestern Caribbean and the Loop Current variability was identified. The evolution of Caribbean Anticyclones crossing the Yucatan Channel is thus an influencing factor on the interior dynamics of the Gulf of Mexico and the connectivity processes with the Caribbean Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Andrade-Canto F, Karrasch D, Beron-Vera FJ (2020) Genesis, evolution, and apocalypse of Loop Current rings. Phys Fluids 32(11):116603

    Article  Google Scholar 

  • Androulidakis Y, Kourafalou V, Halliwell G, Le Hénaff M, Kang H, Mehari M, Atlas R (2016) Hurricane interaction with the upper ocean in the Amazon-Orinoco plume region. Ocean Dyn 66(12):1559–1588

    Article  Google Scholar 

  • Androulidakis, Y., Kourafalou, V., Le Hénaff, M., Kang, H., Ntaganou, N. and Hu, C., 2020a. Gulf Stream evolution through the Straits of Florida: the role of eddies and upwelling near Cuba. Ocean Dynamics, pp.1–28.

  • Androulidakis Y, Kourafalou V, Robert Hole L, Le Hénaff M, Kang H (2020b) Pathways of oil spills from potential Cuban offshore exploration: influence of ocean circulation. J Mar Sci Eng 8(7):535

    Article  Google Scholar 

  • Androulidakis Y, Kourafalou V, Le Hénaff M, Kang H, Sutton T, Chen S, Hu C, Ntaganou N (2019) Offshore spreading of Mississippi waters: pathways and vertical structure under eddy influence. J Geophys Res Oceans 124(8):5952–5978

    Article  Google Scholar 

  • Androulidakis YS, Kourafalou VH, Le Hénaff M (2014) Influence of frontal cyclone evolution on the 2009 (Ekman) and 2010 (Franklin) Loop Current eddy detachment events. Ocean Sci 10:947–965

    Article  Google Scholar 

  • Athié, G., Candela, J., Ochoa, J. and Sheinbaum, J., 2012. Impact of Caribbean cyclones on the detachment of Loop Current anticyclones. J Geophys Res Oceans, 117 (C3).

  • Athié G, Sheinbaum J, Candela J, Ochoa J, Pérez-Brunius P, Romero-Arteaga A (2020) Seasonal variability of the transport through the Yucatan Channel from observations. J Phys Oceanogr 50(2):343–360

    Article  Google Scholar 

  • Beron-Vera FJ, Wang Y, Olascoaga MJ, Goni GJ, Haller G (2013) Objective detection of oceanic eddies and the Agulhas leakage. J Phys Oceanogr 43(7):1426–1438

    Article  Google Scholar 

  • Biggs DC, Fargion GS, Hamilton P, Leben RR (1996) Cleavage of a Gulf of Mexico Loop Current eddy by a deep water cyclone. J Geophys Res Oceans 101(C9):20629–20641

    Article  Google Scholar 

  • Candela J, Sheinbaum J, Ochoa J, Badan A, Leben R (2002) The potential vorticity flux through the Yucatan Channel and the Loop Current in the Gulf of Mexico. Geophys Res Lett 29(22):16–21

    Article  Google Scholar 

  • Cetina, P., Candela, J., Sheinbaum, J., Ochoa, J. and Badan, A., 2006. Circulation along the Mexican Caribbean coast. Journal of Geophysical Research: Oceans, 111(C8).

  • Chang, Y.L. and Oey, L.Y., 2012. Why does the Loop Current tend to shed more eddies in summer and winter?. Geophys Res Lett, 39 (5).

  • Chérubin LM, Morel Y, Chassignet EP (2006) Loop Current ring shedding: The formation of cyclones and the effect of topography. J Phys Oceanogr 36(4):569–591

    Article  Google Scholar 

  • Donohue KA, Watts DR, Hamilton P, Leben R, Kennelly M (2016a) Loop current eddy formation and baroclinic instability. Dyn Atmos Oceans 76:195–216

    Article  Google Scholar 

  • Donohue KA, Watts DR, Hamilton P, Leben R, Kennelly M, Lugo-Fernández A (2016b) Gulf of Mexico loop current path variability. Dyn Atmos Oceans 76:174–194

    Article  Google Scholar 

  • Ezer, T., Oey, L.Y., Lee, H.C. and Sturges, W., 2003. The variability of currents in the Yucatan Channel: analysis of results from a numerical ocean model. J Geophys Res Oceans, 108 (C1).

  • Fratantoni PS, Lee TN, Podesta GP, Muller-Karger F (1998) The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. Journal of Geophysical Research: Oceans 103(C11):24759–24779

    Article  Google Scholar 

  • Garraffo ZD, Mariano AJ, Griffa A, Veneziani C, Chassignet EP (2001) Lagrangian data in a high-resolution numerical simulation of the North Atlantic: I. Comparison with in situ drifter data. J Mar Syst 29(1–4):157–176

    Article  Google Scholar 

  • Garcia-Jove M, Sheinbaum J, Jouanno J (2016) Sensitivity of Loop Current metrics and eddy detachments to different model configurations: the impact of topography and Caribbean perturbations. Atmósfera 29(3):235–265

    Google Scholar 

  • Haller G (2005) An objective definition of a vortex. Journal of Fluid Mechanics 525:1–26

    Article  Google Scholar 

  • Haller G, Beron-Vera FJ (2013) Coherent Lagrangian vortices: the black holes of turbulence. J Fluid Mech 731:R4

    Article  Google Scholar 

  • Haller G, Beron-Vera FJ (2014) Addendum to “Coherent Lagrangian vortices: The black holes of turbulence.” J Fluid Mech 755:R3

    Article  Google Scholar 

  • Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795:136–173

    Article  Google Scholar 

  • Halliwell GR Jr, Mehari MF, Le Hénaff M, Kourafalou VH, Androulidakis IS, Kang HS, Atlas R (2017a) North Atlantic Ocean OSSE system: evaluation of operational ocean observing system components and supplemental seasonal observations for potentially improving tropical cyclone prediction in coupled systems. J Oper Oceanogr 10(2):154–175

    Google Scholar 

  • Halliwell GR, Mehari M, Shay LK, Kourafalou VH, Kang H, Kim HS, Dong J, Atlas R (2017b) OSSE quantitative assessment of rapid-response prestorm ocean surveys to improve coupled tropical cyclone prediction. J Geophys Res Oceans 122(7):5729–5748

    Article  Google Scholar 

  • Halliwell GR Jr, Goni GJ, Mehari M, Kourafalou VH, Baringer M, Atlas R (2020) OSSE assessment of underwater glider arrays to improve ocean model initialization for tropical cyclone prediction. J Atmos Oceanic Tech 37(3):467–487

    Article  Google Scholar 

  • Hamilton P, Lugo-Fernández A, Sheinbaum J (2016) A Loop Current experiment: field and remote measurements. Dyn Atmos Oceans 76:156–173

    Article  Google Scholar 

  • Hamilton P, Bower A, Furey H, Leben R, Pérez-Brunius P (2019) The Loop Current: observations of deep eddies and topographic waves. J Phys Oceanogr 49(6):1463–1483

    Article  Google Scholar 

  • Hurlburt, H.E. and Thompson, J.D., 1982. The dynamics of the Loop Current and shed eddies in a numerical model of the Gulf of Mexico. In Elsevier Oceanogr Ser (Vol. 34, pp. 243–297). Elsevier.

  • Ichiye T (1962) Studies of turbulent diffusion of dye patches in the ocean. J Geophys Res 67(8):3213–3216

    Article  Google Scholar 

  • Karrasch D, Huhn F, Haller G (2015) Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows. Proc R Soc Math Phys Eng Sci 471(2173):20140639

    Google Scholar 

  • Karrasch D, Schilling N (2020) Fast and robust computation of coherent lagrangian vortices on very large two-dimensional domains. SMAI J Comput Math 6:101–124

    Article  Google Scholar 

  • Kourafalou V, Androulidakis Y, Le Hénaff M, Kang H (2017) The dynamics of Cuba anticyclones (CubANs) and interaction with the Loop Current/Florida Current system. J Geophys Res Oceans 122(10):7897–7923

    Article  Google Scholar 

  • Kourafalou VH, Androulidakis YS, Halliwell GR Jr, Kang H, Mehari MM, Le Hénaff M, Atlas R, Lumpkin R (2016) North Atlantic Ocean OSSE system development: Nature Run evaluation and application to hurricane interaction with the Gulf Stream. Prog Oceanogr 148:1–25

    Article  Google Scholar 

  • Le Hénaff, M., Kourafalou, V.H., Morel, Y. and Srinivasan, A., 2012. Simulating the dynamics and intensification of cyclonic Loop Current frontal eddies in the Gulf of Mexico. J Geophys Res Oceans, 117 (C2).

  • Le Hénaff M, Kourafalou VH, Dussurget R, Lumpkin R (2014) Cyclonic activity in the eastern Gulf of Mexico: characterization from along-track altimetry an in situ drifter trajectories. Prog Oceanogr 120:120–138

    Article  Google Scholar 

  • Le Hénaff, M., Kourafalou, V.H., Androulidakis, Y., Smith, R.H., Kang, H.-S., Hu, C., and Lamkin, J., 2020. In situ measurements of circulation features influencing cross‐shelf transport around Northwest Cuba. J Geophys Res Oceans, e2019JC015780.

  • Leben RR (2005) Altimeter-derived loop current metrics. Geophys Monogr Geophy 161:181

    Google Scholar 

  • Lin, Y., Greatbatch, R.J. and Sheng, J., 2009. A model study of the vertically integrated transport variability through the Yucatan Channel: role of Loop Current evolution and flow compensation around Cuba. J Geophys Res Oceans, 114 (C8).

  • Leung, P., Perry, R., Sharma, N., Zwissler, C., McCall, W., Bouchard, R.H. and Martin, K.M., 2016. 2014 & 2015 Loop current observations from a Gulf of Mexico public‐private ocean observing collaboration. In American Geophysical Union, Ocean Sciences Meeting 2016, abstract# OD14A‐2405.

  • Lumpkin R, Pazos M (2007) Measuring surface currents with Surface Velocity Program drifters: the instrument, its data, and some recent results. LAPCOD 2:39

    Google Scholar 

  • Lumpkin R, Grodsky SA, Centurioni L, Rio MH, Carton JA, Lee D (2013) Removing spurious low-frequency variability in drifter velocities. J Atmos Oceanic Tech 30(2):353–360

    Article  Google Scholar 

  • Meunier T, Pallás-Sanz E, Tenreiro M, Portela E, Ochoa J, Ruiz-Angulo A, Cusí S (2018) The vertical structure of a Loop Current Eddy. J Geophys Res Oceans 123(9):6070–6090

    Article  Google Scholar 

  • Mildner TC, Eden C, Czeschel L (2013) Revisiting the relationship between Loop Current rings and Florida Current transport variability. J Geophys Res Oceans 118(12):6648–6657

    Article  Google Scholar 

  • Murphy SJ, Hurlburt HE, O’Brien JJ (1999) The connectivity of eddy variability in the Caribbean Sea, the Gulf of Mexico, and the Atlantic Ocean. J Geophys Res Oceans 104(C1):1431–1453

    Article  Google Scholar 

  • Niiler PP, Paduan JD (1995) Wind-driven motions in the northeast Pacific as measured by Lagrangian drifters. J Phys Oceanogr 25(11):2819–2830

    Article  Google Scholar 

  • Ntaganou, N., Kourafalou, V., Le Hénaff, M., Androulidakis, Y., 2021. The role of the West Florida Shelf topography on the Loop Current system variability, Ocean Dynamics (under review).

  • Nof D (1988) Outflows dynamics. Geophys Astrophys Fluid Dyn 40(3–4):165–193

    Article  Google Scholar 

  • Nof D (2005) The momentum imbalance paradox revisited. J Phys Oceanogr 35(10):1928–1939

    Article  Google Scholar 

  • Oey, L.Y., 2004. Vorticity flux through the Yucatan Channel and Loop Current variability in the Gulf of Mexico. J Geophys Res Oceans, 109 (C10).

  • Oey, L.Y., Lee, H.C. and Schmitz Jr, W.J., 2003. Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: A numerical model study. J Geophys Res Oceans, 108 (C10).

  • Pichevin T, Nof D (1997) The Momentum Imbalance Paradox. Tellus A 49(2):298–319

    Article  Google Scholar 

  • Reid RO (1972) A simple dynamic model of the Loop Current. Contrib Phys Oceanogr Gulf Mexico 2:157–159

    Google Scholar 

  • Reverdin G, Niiler PP, Valdimarsson H (2003) North Atlantic Ocean surface currents. J Geophys Res Oceans 108(C1):2–1

    Article  Google Scholar 

  • Sheinbaum J, Candela J, Badan A, Ochoa J (2002) Flow structure and transport in the Yucatan Channel. Geophys Res Lett 29(3):10–11

    Article  Google Scholar 

  • Sheinbaum J, Athié G, Candela J, Ochoa J, Romero-Arteaga A (2016) Structure and variability of the Yucatan and loop currents along the slope and shelf break of the Yucatan channel and Campeche bank. Dyn Atmos Oceans 76:217–239

    Article  Google Scholar 

  • Vukovich FM (1995) An updated evaluation of the Loop Current’s eddy-shedding frequency. J Geophys Res Oceans 100(C5):8655–8659

    Article  Google Scholar 

  • Weisberg, R.H. and He, R., 2003. Local and deep‐ocean forcing contributions to anomalous water properties on the West Florida Shelf. J Geophys Res Oceans, 108 (C6).

Download references

Funding

This study was funded by the National Academy of Sciences, Engineering and Medicine (Gulf Research Program UGOS #2000011056). Additionally, M. Le Hénaff received partial support for work on this publication by NOAA/AOML and was supported in part under the auspices of the Cooperative Institute for Marine and Atmospheric Studies (CIMAS), a cooperative institute of the University of Miami and NOAA (agreement NA10OAR4320143). This study has been conducted using E.U. Copernicus Marine Service Information. The Julia package CoherentStructures.jl is available from https://github.com/CoherentStructures/CoherentStructures.jl.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Androulidakis.

Additional information

Responsible Editor: Tal Ezer

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Androulidakis, Y., Kourafalou, V., Olascoaga, M.J. et al. Impact of Caribbean Anticyclones on Loop Current variability. Ocean Dynamics 71, 935–956 (2021). https://doi.org/10.1007/s10236-021-01474-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-021-01474-9

Keywords

Navigation