Skip to main content

Advertisement

Log in

Northern boundary current variability and mesoscale dynamics: a long-term HF RADAR monitoring in the North-Western Mediterranean Sea

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Coastal waters are globally challenging areas to monitor not only because of the high resolution needed to resolve the scales at stake but also because most satellites are not yet suited to near-coast observations. We present here the analysis of an 8-year-long high-frequency RADAR (HFR) dataset off the coasts of Var region (France) in the North-Western Mediterranean Sea. Successive interruptions and errors intrinsic to the nature of the HFR remote-sensing technology have been compensated by the DINEOF statistical filling method. This unprecedented dataset enables the observation of many oceanic processes ranging from the interannual variability of large-scale structures to the identification of (sub)mesoscale features. Comparing and coupling this analysis with outputs from a regional ocean circulation model (GLAZUR), we also put emphasis on the extent of the possibilities of the HFR for the description of coastal surface circulation and its value as part of integrated observation systems. The data showed the diversity of the surface circulation in the region, mainly marked by the Northern boundary Current (NC), but undergoing a great variety of spatial and temporal fluctuations, interannually, seasonally, and at higher frequencies. Strong gusts of wind or regional upstream circulation can cause the undulations of the NC, modifying its shape and its strength, and fostering the emergence and zonal displacement of mesoscale to submesoscale eddies. Using an eddy tracking algorithm, we show that the occurrence of mesoscale eddies off this region display a strong inter-annual variability that is linked to the spatio-temporal variability of the NC’s characteristics. The NC system thus plays an intermittent role as a transport carrier or barrier of heat, energy, or matter, which has important consequences for neighbouring coastal areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

HFR dataset used in this study is available at the following address: http://erddap.osupytheas.fr/erddap/files/.

References

  • Alexander MA, Deser C, Timlin MS (1999) The reemergence of sst anomalies in the north pacific ocean. J Clim

  • Alvera-Azcárate A, Barth A, Michel R, Beckers J (2005) Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the adriatic sea surface temperature. Ocean Model 9:325–346. https://doi.org/10.1016/j.ocemod.2004.08.001

    Article  Google Scholar 

  • Arbic B, Scott R, Flierl G, Morten A, Richman J, Shriver J (2012) Nonlinear cascades of surface oceanic geostrophic kinetic energy in the frequency domain. J Phys Oceanogr 42:1577–1600. https://doi.org/10.1175/JPO-D-11-0151.1

    Article  Google Scholar 

  • Archer M (2016) The florida current: Mean jet structure, meandering and velocity fluctuations observed with hf radar. PhD thesis, University of Miami

  • Archer M, Keating S, Roughan M, Johns W, Lumpkin R, Beron-Vera F, Shay L (2018) The kinematic similarity of two western boundary currents revealed by sustained high-resolution observations. Geophys Res Lett 45. https://doi.org/10.1029/2018GL078429

  • Bagaglini L, Falco P, Zambianchi E (2019) Eddy detection in hf radar-derived surface currents in the gulf of naples. Remote Sens 12. https://doi.org/10.3390/rs12010097

  • Barbin Y, Broche P, de Maistre J, Forget P, Gaggelli J (2006) Practical results of direction finding method applied on a 4 antenna linear array wera. In: Proc Sixth Int Workshop on Radio Oceanography (ROW-6), Hamburg, Germany, Universität Hamburg

  • Barrick D (1978) Hf radio oceanography - a review. Bound-Lay Meteorol 13:23–43. https://doi.org/10.1007/BF00913860

    Article  Google Scholar 

  • Beckers JM, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic datasets. J Atmos Oceanic Tech 20(12):1839–1856

    Article  Google Scholar 

  • Berline L, Zakardjian B, Molcard A, Ourmières Y, Guihou K (2013) Modeling jellyfish pelagia noctiluca transport and stranding in the ligurian sea. Mar Pollut Bull 70. https://doi.org/10.1016/j.marpolbul.2013.02.016

  • Berta M, Bellomo L, Griffa A, Magaldi M, Molcard A, Mantovani C, Gasparini G, Marmain J, Vetrano A, Beguery L, Borghini M, Barbin Y, Gaggelli J, Quentin C (2018) Wind induced variability in the northern current (north-western mediterranean sea) as depicted by a multi-platform observing system. Ocean Sci Discuss :1–36. https://doi.org/10.5194/os-2018-20

  • Beuvier J, Béranger K, Lebeaupin Brossier C, Somot S, Sevault F, Drillet Y, Bourdallé-Badie R, Ferry N, Lyard F (2012) Spreading of the western mediterranean deep water after winter 2005: Time scales and deep cyclone transport. J Geophys Res Oceans 117(C7). https://doi.org/10.1029/2011JC007679. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JC007679

  • Castro J, Carsteanu A, Fuentes J (2011) On the phenomenology underlying taylor’s hypothesis in atmospheric turbulence. Revista mexicana de física 57:60–64

    Google Scholar 

  • Chelton D, Schlax M, Samelson R (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91. https://doi.org/10.1016/j.pocean.2011.01.002

  • Cosoli S, Gacic M, Mazzoldi A (2012) Surface current variability and wind influence in the north eastern adriatic sea as observed from high-frequency (hf) radar measurements. Cont Shelf Res

  • Cosoli S, Licer M, Vodopivec M, Malacic V (2013) Surface circulation in the gulf of trieste (northern adriatic sea) from radar, model and adcp comparisons. J Geophys Res Oceans

  • Crépon M (1969) Hydrodynamique marine en régime impulsionnel. Cahiers Océanographiques

  • Davidson F, Alvera-Azcárate A, Barth A, Chassignet E, Clementi E, De Mey-Frémaux P, Oddo P, Siddorn J, Pequignet C, Lorente P, Hernandez F, Pascual A, Kourafalou V, Maksymczuk J, Brassington G, Staneva J, Storto A (2019) Synergies in operational oceanography: The intrinsic need for sustained ocean observations. Front Mar Sci 6:450. https://doi.org/10.3389/fmars.2019.00450

    Article  Google Scholar 

  • Declerck A, Ourmières Y, Molcard A (2016) Assessment of the coastal dynamics in a nested zoom and feedback on the boundary current: the north-western mediterranean sea case. Ocean Dyn 66. https://doi.org/10.1007/s10236-016-0985-4

  • Déqué M, Dreveton C, Braun A, Cariolle D (1994) The arpege/ifs atmosphere model: a contribution to the french community climate modelling. Climate Dynam 10:249–266

    Article  Google Scholar 

  • Deser C, Blackmon ML (1993) Surface climate variations over the north atlantic ocean during winter: 1900–1989. J Clim

  • Dumas D, Guérin CA (2020) Self-calibration and antenna grouping for bistatic oceanographic high-frequency radars. arXiv:2005.10528

  • Dumas D, Gramoullé A, Guérin C A, Molcard A, Ourmieres Y, Zakardjian B (2020) Multistatic estimation of high-frequency radar surface currents in the region of toulon. Ocean Dyn 70:1485–1503

    Article  Google Scholar 

  • Escudier R, Renault L, Pascual A, Brasseur P, Chelton D, Beuvier J (2016) Eddy properties in the western mediterranean sea from satellite altimetry and a numerical simulation. J Geophys Res Oceans 121. https://doi.org/10.1002/2015JC011371

  • Falco P, Buonocore B, Cianelli D, Luca L, Alberto G, Iermano I, Kalampokis A, Saviano S, Uttieri M, Zambardino G, Zambianchi E (2016) Dynamics and sea state in the gulf of naples: potential use of high-frequency radar data in an operational oceanographic context. J Oper Ocean 9:s33–s45. https://doi.org/10.1080/1755876X.2015.1115633

    Google Scholar 

  • Falkowski PG, Ziemann D, Kolber Z, Bienfang PK (1991) Role of eddy pumping in enhancing primary production in the ocean. Nature

  • Ferrari R, Wunsch C (2008) Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu Rev Fluid Mech 41:253–282. https://doi.org/10.1146/annurev.fluid.40.111406.102139

    Article  Google Scholar 

  • Gaube P, Braun C, Lawson G, McGillicuddy D, Penna A, Skomal G, Fischer C, Thorrold S (2018) Mesoscale eddies influence the movements of mature female white sharks in the gulf stream and sargasso sea. Sci Rep 8. https://doi.org/10.1038/s41598-018-25565-8

  • Grilli F, Pinardi N (1998) The computation of rossby radii of deformation for the mediterranean sea. MTP News

  • Guihou K, Marmain J, Ourmières Y, Molcard A, Zakardjian B, Forget P (2013) A case study of the mesoscale dynamics in the north-western mediterranean sea: a combined data–model approach. Ocean Dyn 63. https://doi.org/10.1007/s10236-013-0619-z

  • Gurgel KW, Essen HH, Schlick T (2006) An empirical method to derive ocean waves from second-order bragg scattering: Prospects and limitations. IEEE J Ocean Eng 31:804–811. https://doi.org/10.1109/JOE.2006.886225

    Article  Google Scholar 

  • Hernández-Carrasco I, Solabarrieta L, Rubio A, Esnaola G, Reyes E, Orfila A (2018) Impact of hf radar current gap-filling methodologies on the lagrangian assessment of coastal dynamics. Ocean Sci 14:827–847. https://doi.org/10.5194/os-14-827-2018

    Article  Google Scholar 

  • Hyder P, Simpson J, Christopoulos S (2002) Sea-breeze forced diurnal surface currents in the thermaikos gulf, north-west aegean. Cont Shelf Res 22:585–601. https://doi.org/10.1016/S0278-4343(01)00080-2

    Article  Google Scholar 

  • Kaihatu JM, Handler RA, Marmorino GO, Shay LK (1998) Empirical orthogonal function analysis of ocean surface currents using complex and Real-Vector methods. J Atmos Oceanic Tech 15(4):927–941

    Article  Google Scholar 

  • Kaplan DM, Lekien F (2007) Spatial interpolation and filtering of surface current data based on open-boundary modal analysis. J Geophys Res Oceans 112(C12). https://doi.org/10.1029/2006JC003984, https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JC003984

  • Kim SY, Terrill E, Cornuelle B, Jones B, Washburn L, Moline M, Paduan J, Garfield N, Largier J, Crawford G, Kosro P (2011) Mapping the u.s. west coast surface circulation: a multiyear analysis of high-frequency radar observations. J Geophys Res 116. https://doi.org/10.1029/2010JC006669

  • Kohut J, Glenn S (2003) Improving hf radar surface current measurements with measured antenna beam patterns. J Atmos Ocean Technol 20

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Dokl Akad Nauk SSSR 30:301–305

    Google Scholar 

  • Kondetharayil Soman A, Jena B, Velu S, Rajkumar J (2018) Variability in eddy distribution associated with east India coastal current from hf radar observations along south-east coast of India. J Geophys Res Oceans. https://doi.org/10.1029/2018JC014041

  • Kourafalou VH, Kang H (2012) Florida current meandering and evolution of cyclonic eddies along the florida keys reef tract: are they interconnected?. J Geophys Res Oceans 117(C5) https://doi.org/10.1029/2011JC007383. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JC007383

  • LaCasce JH (2016) Estimating eulerian energy spectra from drifters. Fluids 1(4). https://doi.org/10.3390/fluids1040033, https://www.mdpi.com/2311-5521/1/4/33

  • Langlais C, Barnier B, Molines J, Fraunié P, Jacob D, Kotlarski S (2009) Evaluation of a dynamically downscaled atmospheric reanalyse in the prospect of forcing long term simulations of the ocean circulation in the gulf of lions. Ocean Model 30:270–286. https://doi.org/10.1016/j.ocemod.2009.07.004

    Article  Google Scholar 

  • Leboeuf R, Mehta R (1995) On using taylor’s hypothesis for three-dimensional mixing layers. Phys Fluids 7. https://doi.org/10.1063/1.868539

  • Lefevre F (2000) Modélisation des marées océaniques à l’échelle globale : assimilation de données in situ et altimétriques. PhD thesis, Université de Toulouse

  • Lellouche JM, Le Galloudec O, Drévillon M, Régnier C, Greiner E, Garric G, Ferry N, Desportes C, Testut CE, Bricaud C, Bourdallé-Badie R, Tranchant B, Benkiran M, Drillet Y, Daudin A, De Nicola C (2013) Evaluation of global monitoring and forecasting systems at mercator océan. Ocean Sci 9(1):57–81. https://doi.org/10.5194/os-9-57-2013, https://os.copernicus.org/articles/9/57/2013/

    Article  Google Scholar 

  • Levitus S, Antonov J, Boyer T, Garcia H, Locarnini R (2005) Eof analysis of upper ocean heat content, 1956-2003. Geophys Res Lett 321. https://doi.org/10.1029/2005GL023606

  • Long AE, Trizna DB (1973) Mapping of north atlantic winds by hf radar sea backscatter interpretation. IEEE Trans Antennas Propag 21:680–685

    Article  Google Scholar 

  • Lorente P, Piedracoba S, Soto-Navarro J, Álvarez Fanjul E (2016) Characterizing the surface circulation in ebro delta (nw mediterranean) with hf radar and modeled current data. J Mar Syst

  • Lorente P, Piedracoba S, Sotillo M, Alvarez Fanjul E (2019) Long-term monitoring of the atlantic jet through the strait of Gibraltar with hf radar observations. J Mar Sci Eng 7:16. https://doi.org/10.3390/jmse7010003

    Article  Google Scholar 

  • Lorente P, Lin-Ye J, García-León M, Reyes E, Fernandes M, Sotillo MG, Espino M, Ruiz MI, Gracia V, Perez S, Aznar R, Alonso-Martirena A, Álvarez Fanjul E (2021) On the performance of high frequency radar in the western mediterranean during the record-breaking storm gloria. Front Mar Sci 8:205. https://doi.org/10.3389/fmars.2021.645762. https://www.frontiersin.org/article/10.3389/fmars.2021.645762

    Article  Google Scholar 

  • Macmahan J, Reniers A, Ashley W, Thornton E (2012) Frequency-wavenumber velocity spectra, Taylor’s hypothesis, and length scales in a natural gravel bed river. Water Resour Res 48:9548. https://doi.org/10.1029/2011WR011709

    Article  Google Scholar 

  • Madec G (2008) NEMO reference manual, ocean dynamic component: NEMO–OPA, Note du Pôle de modélisation, Institut Pierre Simon Laplace. Technical Report 27, Note du pôle de modélisation, LOCEAN/IPSL. Internal Report

  • Mandal S, Sil S, Pramanik S, Kondetharayil Soman A, Jena B (2019) Characteristics and evolution of a coastal mesoscale eddy in the western bay of bengal monitored by high-frequency radars. Dyn Atmos Oceans 88. https://doi.org/10.1016/j.dynatmoce.2019.101107

  • Marmain J (2013) Circulation côtière en méditerranée nord occidentale : courantométrie par radar hf et couplage avec un modèle numérique. PhD thesis, University of Toulon

  • Marmain J, Molcard A, Forget P, Barth A, Ourmières Y (2014) Assimilation of hf radar surface currents to optimize forcing in the north western mediterranean sea. Nonlinear Processes Geophys 21:1–17. https://doi.org/10.5194/npg-21-659-2014

    Article  Google Scholar 

  • Mason E, Ruiz S, Bourdalle-Badie R, Reffray G, Sotillo M, Pascual A (2019) New insight into 3-d mesoscale eddy properties from cmems operational models in the western mediterranean. Ocean Sci 15:1111–1131. https://doi.org/10.5194/os-15-1111-2019

    Article  Google Scholar 

  • Mauri E, Poulain PM, Notarstefano G (2008) Spatial and temporal variability of the sea surface temperature in the gulf of trieste between january 2000 and december 2006. J Geophys Res Oceans 113(C10). https://doi.org/10.1029/2007JC004537

  • McWilliams J (2019) A survey of submesoscale currents. Geosci Lett 6:3. https://doi.org/10.1186/s40562-019-0133-3

    Article  Google Scholar 

  • Millot C (1989) La circulation générale en Méditerranée occidentale : Aperçu de nos connaissances et projets d’études. Annales de géographie. https://doi.org/10.3406/geo.1989.20925

  • Molcard A, Nadia P, Iskandarani M, Haidvogel D (2002) Wind driven general circulation of the mediterranean sea simulated with a spectral element ocean model. Dyn Atmos Oceans 35:97–130. https://doi.org/10.1016/S0377-0265(01)00080-X

    Article  Google Scholar 

  • Nencioli F, Dong C, Dickey T, Washburn L, McWilliams JC (2010) A vector geometry–based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California bight. J Atmos Ocean Technol 27(3):564–579. https://doi.org/10.1175/2009JTECHO725.1https://journals.ametsoc.org/jtech/article-pdf/27/3/564/3341734/2009jtecho725_1.pdf

    Article  Google Scholar 

  • Orfila A, Molcard A, Sayol JM, Marmain J, Bellomo L, Quentin C, Barbin Y (2015) Empirical forecasting of hf-radar velocity using genetic algorithms. IEEE Trans Geosci Remote Sens 53 (5):2875–2886

    Article  Google Scholar 

  • Ourmières Y, Zakardjian B, Béranger K, Langlais C (2011) Assessment of a nemo-based downscaling experiment for the north-western mediterranean region: impacts on the northern current and comparison with adcp data and altimetry products. Ocean Model 39 (3):386–404. https://doi.org/10.1016/j.ocemod.2011.06.002, http://www.sciencedirect.com/science/article/pii/S1463500311001041

    Article  Google Scholar 

  • Ourmières Y, Mansui J, Molcard A, Galgani F, Isabelle P (2018) The boundary current role on the transport and stranding of floating marine litter: the french riviera case. Cont Shelf Res 155. https://doi.org/10.1016/j.csr.2018.01.010

  • Paduan J, Kim K, Cook M, Chavez F (2006) Calibration and validation of direction-finding high-frequency radar ocean surface current observations. IEEE J Ocean Eng 31:862–875. https://doi.org/10.1109/JOE.2006.886195

    Article  Google Scholar 

  • Petrenko AA (2003) Variability of circulation features in the gulf of lion nw mediterranean sea. importance of inertial currents. Oceanologica acta

  • Roarty H, Cook T, Hazard L, George D, Harlan J, Cosoli S, Wyatt L, Alvarez Fanjul E, Terrill E, Otero M, Largier J, Glenn S, Ebuchi N, Whitehouse B, Bartlett K, Mader J, Rubio A, Corgnati L, Mantovani C, Griffa A, Reyes E, Lorente P, Flores-Vidal X, Saavedra-Matta KJ, Rogowski P, Prukpitikul S, Lee SH, Lai JW, Guerin CA, Sanchez J, Hansen B, Grilli S (2019) The global high frequency radar network. Front Mar Sci 6:164. https://doi.org/10.3389/fmars.2019.00164, https://www.frontiersin.org/article/10.3389/fmars.2019.00164

    Article  Google Scholar 

  • Roarty H, Glenn S, Brodie J, Handel E, Nazzaro L, Smith M, Brown W, Boicourt W, Updyke T, Atkinson L, Wang H, Gong D, Muglia M, Seim H, Kohut J (2020), Annual and seasonal surface circulation over the mid atlantic bight continental shelf derived from a decade of high frequency radar observations. J. Geophys. Res. Oceans. https://doi.org/10.1002/essoar.10503038.1

  • Rubio A, Mader J, Corgnati L, Mantovani C, Griffa A, Novellino A, Quentin C, Wyatt L, Schulz-Stellenfleth J, Horstmann J, Lorente P, Zambianchi E, Hartnett M, Fernandes C, Zervakis V, Gorringe P, Melet A, Puillat I (2017) Hf radar activity in european coastal seas: Next steps toward a pan-european hf radar network. Front Mar Sci 4:8. https://doi.org/10.3389/fmars.2017.00008. https://www.frontiersin.org/article/10.3389/fmars.2017.00008

    Article  Google Scholar 

  • Schaeffer A, Molcard A, Forget P, Fraunié P, Garreau P (2011) Generation mechanisms for mesoscale eddies in the gulf of lions: Radar observation and modeling. Ocean Dyn 61:1587–1609. https://doi.org/10.1007/s10236-011-0482-8

    Article  Google Scholar 

  • Schaeffer A, Gramoullé A, Roughan M, Mantovanelli A (2017) Characterizing frontal eddies along the East Australian Current from HF radar observations. J Geophys Res Oceans 122(5):3964–3980. https://doi.org/10.1002/2016JC012171, https://hal.archives-ouvertes.fr/hal-01830119https://hal.archives-ouvertes.fr/hal-01830119

    Article  Google Scholar 

  • Solabarrieta L, Rubio A, Castanedo S, Medina R, Charria G, Hernández C (2013) Surface water circulation patterns in the southeastern bay of biscay: new evidences from hf radar data. Cont Shelf Res 74. https://doi.org/10.1016/j.csr.2013.11.022

  • Stephens C, Levitus S, Antonov J, Boyer T (2001) On the pacific ocean regime shift. Geophys Res Lett 28. https://doi.org/10.1029/2000GL012813

  • Stuhlmacher A, Gade M (2020) Statistical analyses of eddies in the western mediterranean sea based on synthetic aperture radar imagery. Remote Sens Environ 250:112023. https://doi.org/10.1016/j.rse.2020.112023

    Article  Google Scholar 

  • Taylor G (1938) The spectrum of turbulence. Proc R Soc Lond

  • Thomson RE, Emery WJ (2014) Chapter 5 - time series analysis methods. In: Thomson RE, Emery WJ (eds) Data analysis methods in physical oceanography (Third Edition). 3rd edn. https://doi.org/10.1016/B978-0-12-387782-6.00005-3. Elsevier, Boston, pp 425–591

  • Todd RE, Chavez FP, Clayton S, Cravatte S, Goes M, Graco M, Lin X, Sprintall J, Zilberman NV, Archer M, Arístegui J, Balmaseda M, Bane JM, Baringer MO, Barth JA, Beal LM, Brandt P, Calil PHR, Campos E, Centurioni LR, Chidichimo MP, Cirano M, Cronin MF, Curchitser EN, Davis RE, Dengler M, deYoung B, Dong S, Escribano R, Fassbender AJ, Fawcett SE, Feng M, Goni GJ, Gray AR, Gutiérrez D, Hebert D, Hummels R, Ito SI, Krug M, Lacan F, Laurindo L, Lazar A, Lee CM, Lengaigne M, Levine NM, Middleton J, Montes I, Muglia M, Nagai T, Palevsky HI, Palter JB, Phillips HE, Piola A, Plueddemann AJ, Qiu B, Rodrigues RR, Roughan M, Rudnick DL, Rykaczewski RR, Saraceno M, Seim H, Gupta AS, Shannon L, Sloyan BM, Sutton AJ, Thompson L, Plas AKvd, Volkov D, Wilkin J, Zhang D, Zhang L (2019) Global perspectives on observing ocean boundary current systems. Front Mar Sci

  • Tran MC, Sentchev A, Nguyen KC (2021) Multi-scale variability of circulation in the gulf of tonkin from remote sensing of surface currents by high-frequency radars. Ocean Dyn 41. https://doi.org/10.1146/annurev.fluid.40.111406.102139

  • Wilczek M, Narita Y (2012) Wave-number–frequency spectrum for turbulence from a random sweeping hypothesis with mean flow. Phys Rev E Stat Nonlin Soft Matter Phys 86:066308. https://doi.org/10.1103/PhysRevE.86.066308

    Article  Google Scholar 

  • Wyatt L, Green J, Middleditch A, Moorhead M, Howarth J, Holt M, Keogh S (2006) Operational wave, current, and wind measurements with the pisces hf radar. IEEE J Ocean Eng 31:819–834. https://doi.org/10.1109/JOE.2006.888378

    Article  Google Scholar 

Download references

Acknowledgements

The maintenance and updating of the radar systems have been supported by successive European projects (TOSCA MED-Program, Interreg Marittimo IMPACT and SICOMAR-PLUS, and MED-SHAREMED). The authors would like to thank the radar team (C.A. Guérin, D. Dumas, A. Gramoullé, C. Quentin, B. Zakardjian, D. Mallarino) for the availability of HFR data and Y. Ourmières for the model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natacha Bourg.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Alejandro Orfila

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 3.38 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourg, N., Molcard, A. Northern boundary current variability and mesoscale dynamics: a long-term HF RADAR monitoring in the North-Western Mediterranean Sea. Ocean Dynamics 71, 851–870 (2021). https://doi.org/10.1007/s10236-021-01466-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-021-01466-9

Keywords

Navigation