Skip to main content

Advertisement

Log in

Determining the dependence of the power supply to the ocean on the length and time scales of the dynamics between the meso-scale and the synoptic scale, from satellite data

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

The input of mechanical power to the ocean due to the surface wind stress, in regions which correspond to different regimes of ocean dynamics, is considered using data from satellites observations. Its dependence on the coarse-graining range of the atmospheric and oceanic velocity in space from 0.5 to 10 and time from 6 h to 40 days is determined. In the area of the Gulf Stream and the Kuroshio extensions, the dependence of the power input on space-time coarse-graining varies over tenfold for the coarse-graining considered. It decreases over twofold for the Gulf Stream extension and threefold for the Kuroshio extension, when the coarse-graining length scale passes from a few degrees to 0.5 at a temporal coarse-graining scale of a few days. It increases over threefold in the Gulf Stream and the Kuroshio extensions when the coarse-graining passes from several days to 6 h at a spatial coarse-graining of a few degrees. The power input is found to increase monotonically with shorter coarse-graining in time. Its variation with coarse-graining in space has no definite sign. Results show that including the dynamics at scales below a few degrees reduces considerably the power input by air-sea interaction in regions of strongly nonlinear ocean currents. When the ocean velocities are not considered in the shear calculation, the power input is considerably (up to threefold) increased. The dependence of the power input on coarse-graining in space and time is close to being multiplicatively separable in all regions and for most of the coarse-graining domain considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akuetevi CQC, Wirth A (2015) . Ocean Sci 11:471–481

    Article  Google Scholar 

  • Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) . J Climate 15(16):2205

    Article  Google Scholar 

  • Aluie H, Hecht M, Vallis GK (2018) . J Phys Oceanogr 48(2):225

    Article  Google Scholar 

  • Bentamy A, Grodsky SA, Elyouncha A, Chapron B, Desbiolles F (2017) . Int J Climatol 37(2):870

    Article  Google Scholar 

  • Bjerknes J (1964) . Adv Geophys 10:1–82

    Article  Google Scholar 

  • Bonjean F, Lagerloef GS (2002) . J Phys Oceanogr 32(10):2938

    Article  Google Scholar 

  • Csanady GT (2001) Air-sea interaction: laws and mechanisms. Cambridge University Press

  • Desbiolles F, Bentamy A, Blanke B, Roy C, Mestas-Nuñez AM, Grodsky SA, Herbette S, Cambon G, Maes C (2017) . J Mar Syst 168:38

    Article  Google Scholar 

  • Duhaut TH, Straub DN (2006) . J Phys Oceanogr 36(2):202

    Article  Google Scholar 

  • Ferrari R, Wunsch C (2009) Annual Review of Fluid Mechanics, 41

  • Flexas MM, Thompson AF, Torres HS, Klein P, Farrar JT, Zhang H, Menemenlis D (2019) . J Geophys ResOceans 124(8):5723

    Article  Google Scholar 

  • Gersten K, et al. (2017) Boundary-layer theory. Springer

  • Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) . Geophys Monograph-Am Geophys Union 134:1

    Google Scholar 

  • Klein P, Lapeyre G, Siegelman L, Qiu B, Fu LL, Torres H, Su Z, Menemenlis D, Le Gentil S (2019) . Earth Space Sci 6(5):795

    Article  Google Scholar 

  • Melville WK (1996) . Ann Rev Fluid Mech 28(1):279

    Article  Google Scholar 

  • Moulin A, Wirth A (2014) . J Phys Oceanogr 44(2):733

    Article  Google Scholar 

  • O’Rourke AK, Arbic BK, Griffies SM (2018) . J Clim 31(5):1789

    Article  Google Scholar 

  • Renault L, McWilliams JC, Masson S (2017) . Sci Rep 7(1):17747

    Article  Google Scholar 

  • Rimac A, Storch JS, Eden C (2016) . J Phys Oceanogr 46(6):1885

    Article  Google Scholar 

  • Rimac A, von Storch JS, Eden C, Haak H (2013) . Geophys Res Lett 40(18):4882

    Article  Google Scholar 

  • Rio MH, Mulet S, Picot N (2014) . Geophys Res Lett 41(24):8918

    Article  Google Scholar 

  • Roquet F, Wunsch C, Madec G (2011) . J Phys Oceanogr 41(12): 2328

    Article  Google Scholar 

  • Scott RB, Xu Y (2009) . Deep Sea Research Part I: Oceanographic Research Papers 56(3):295

    Article  Google Scholar 

  • Stern ME (1975) Ocean circulation physics, vol 19. Academic Press

  • Stull RB (2012) An introduction to boundary layer meteorology, vol 13. Springer Science & Business Media

  • Sudre J, Maes C, Garçon V (2013) . Limnology and Oceanography: Fluids and Environments 3(1):1

    Google Scholar 

  • Vallis GK (2017) Atmospheric and oceanic fluid dynamics. Cambridge University Press

  • Veron F (2015) . Annu Rev Fluid Mech 47:507

    Article  Google Scholar 

  • Wirth A (2018) . J Phys Oceanogr 48(4):831

    Article  Google Scholar 

  • Wirth A (2019) . Nonlinear Processes Geophys 26(4):457

    Article  Google Scholar 

  • Zhai X, Johnson HL, Marshall DP, Wunsch C (2012) . J Phys Oceanogr 42(8):1357

    Article  Google Scholar 

Download references

Acknowledgments

These data were provided by the Centre de Recherche et d Exploitation Satellitaire (CERSAT), at IFREMER, Plouzane (France) and CMEMS. Part of this work was performed when AW visited LOPS, Brest. We are grateful to Abderrahim Bentamy for explanation concerning the data and Mickael Accensi and Jean-Fancois Piolle for help with the data analysis.

Funding

This work was funded by Labex OASUG@2020 (Investissement d’avenir - ANR10 LABX56).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Wirth.

Additional information

Responsible Editor: Dirk Olbers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirth, A. Determining the dependence of the power supply to the ocean on the length and time scales of the dynamics between the meso-scale and the synoptic scale, from satellite data. Ocean Dynamics 71, 439–445 (2021). https://doi.org/10.1007/s10236-020-01439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-020-01439-4

Keywords

Navigation