Skip to main content

Global assessments of the NCEP Ensemble Forecast System using altimeter data

Abstract

Forecasts of 10-m wind (U10) and significant wave height (Hs) from the National Centers for Environmental Prediction (NCEP) Ensemble Forecast System are evaluated using altimeter data. Four altimeter missions are selected for the assessment in 2017 that provide a total of 33,229,297 data points matching model state to altimeter measurement. This large quantity of data allows the investigation of the error as a function of forecast ranges, quantiles, and location. Special attention is given to the comparison between the arithmetic mean of the ensemble forecast and the deterministic forecast control run. Error metrics are selected to quantify and separate the systematic and scatter components of the error. Results indicate a large reduction of the scatter errors (SCrmse) in the ensemble mean compared to the control run; more evident for U10, where large SCrmse of 5 m/s associated with strong winds at mid-latitudes beyond forecast day 7 drops to 3 m/s for the ensemble mean. This benefit is transferred to Hs and the largest SCrmse of 1.8 m at the control run is reduced to 1.3 m for the ensemble mean. Although the overall forecast skill of the ensemble forecast is improved, the extreme quantiles of Hs and U10 beyond forecast day 5 tend to underestimate the observations. This implies a need for bias correction algorithms applied during post-processing of the NCEP ensemble products. We conclude that for reliable wind and wave forecasts beyond 7 days at mid- and high latitudes, it is essential to use ensemble forecast products, especially when associated with extratropical areas in the Southern Hemisphere.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Alves JHGM, Young IR (2004) On estimating extreme wave heights using combined Geosat, Topex/Poseidon and ERS-1 altimeter data. Appl Ocean Res 25(4):167–186

    Article  Google Scholar 

  • Alves, J.H.G.M., Wittman, P., Sestak, M., Schauer,J., Stripling, S., Bernier, N.B., McLean, J., Chao, Y., Chawla, A., Tolman, H., Nelson, G., Klots, S., 2013. The NCEP–FNMOC combined wave ensemble product. Expanding benefits of interagency probabilistic forecasts to the oceanic environment. Bull Am Meteorol Soc, BAMS, 2013;94(12):1893-1905

    Article  Google Scholar 

  • Bidlot JR (2017) Twenty-one years of wave forecast verification. ECMWF Newsletter 150:31–36

    Google Scholar 

  • Boukabara S-A, Krasnopolsky V, Stewart JQ, Penny SG, Hoffman RN, Maddy E, 2019. Artificial intelligence may be key to better weather forecasts. Earth & Space Science News: https://eos.org/opinions/artificial-intelligence-may-be-key-to-better-weather-forecasts

  • Bowler NE, Arribas A, Mylne KR, Robertson RB, Beare SE (2008) The MOGREPS short-range ensemble prediction system. Q J R Meteorol Soc 134:703–722

    Article  Google Scholar 

  • Bunney C, Saulter A (2015) An ensemble forecast system for prediction of Atlantic–UK wind waves. Ocean Model 96:103–116

    Article  Google Scholar 

  • Cao D, Chen HS, Tolman HL, 2007. Verification of ocean wave ensemble forecasts at NCEP. Proc. 10th Int. Workshop on Wave Hindcasting and Forecasting and First Coastal Hazards Symp., Oahu, Hawaii, Environment Canada, G1

  • Campos RM, Guedes Soares C (2016) Comparison and assessment of three wave hindcasts in the North Atlantic Ocean. J Oper Oceanogr 9:26–44

    Google Scholar 

  • Campos, R.M., Krasnopolsky, V., Alves, J.H.G.M, Penny, S.G., 2019. Nonlinear wave ensemble averaging in the Gulf of Mexico using neural networks. J Atmos Ocean Technol, 36, 113–127

    Article  Google Scholar 

  • Campos RM, Alves JHGM, Penny SG, Krasnopolsky V (2018a) Assessments of surface winds and waves from the NCEP Ensemble Forecast System. Weather Forecast 33:1533–1564. https://doi.org/10.1175/WAF-D-18-0086.1

    Article  Google Scholar 

  • Campos RM, Alves JHGM, Guedes Soares C, Guimaraes LG, Parente CE (2018b) Extreme wind-wave modeling and analysis in the South Atlantic Ocean. Ocean Model 124:75–93

    Article  Google Scholar 

  • Candille G (2009) The multiensemble approach: the NAEFS example. Mon Weather Rev 137(5):1655–1665

    Article  Google Scholar 

  • Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247–1250

    Article  Google Scholar 

  • Chen HS, 2006. Ensemble prediction of ocean waves at NCEP. Proc. 28th Ocean Engineering Conf., Taipei, Taiwan, NSYSU, 25–37

  • Cooper CK, Forristall GZ (1997) The use of satellite altimeter data to estimate extreme wave climate. J Atmos Ocean Technol 14(2):254–266

    Article  Google Scholar 

  • Durrant TH, Woodcock F, Greenslade DJM (2009) Consensus forecasts of modelled wave parameters. Weather Forecast 24:492–503

    Article  Google Scholar 

  • Ebert E, Wilson L, Weigel A, Mittermaier M, Nurmi P, Gill P, Göber M, Joslyn S, Brown B, Fowler T, Watkins A (2013) Progress and challenges in forecast verification. Meteorol Appl 20:130–139

    Article  Google Scholar 

  • Grumbine RW, 1996. Automated passive microwave sea ice concentration analysis at NCEP. NOAA Tech Note 120, 13 pp.

  • Harpham Q, Tozer N, Cleverley P, Wyncoll D, Cresswell D (2016) A Bayesian method for improving probabilistic wave forecasts by weighting ensemble members. Environ Model Softw 84:482–493

    Article  Google Scholar 

  • Hernandez F, Blockley E, Brassington GB, Davidson F, Divakaran P, Drévillon M, Ishizaki S, Garcia-Sotillo M, Hogan PJ, Lagemaa P, Levier B, Martin M, Mehra A, Mooers C, Ferry N, Ryan A, Regnier C, Sellar A, Smith GC, Sofianos S, Spindler T, Volpe G, Wilkin J, Zaron ED, Zhang A (2015) Recent progress in performance evaluations and near real-time assessment of operational ocean products. J Oper Oceanogr 8(S2):221–238

    Google Scholar 

  • Hoffschildt M, Bidlot J, Hansen B, Janssen PAE (1999) Potential benefits of ensemble forecasting for ship routing. ECMWF Tech Memo 287:25

    Google Scholar 

  • Jolliff JK, Kindle JC, Shulman I, Penta B, Friedrichs MAM, Helber R, Arnone RA (2009) Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J Mar Syst 76:64–82

    Article  Google Scholar 

  • Kalnay E, 2003. Atmospheric modeling, data assimilation and predictability. Cambridge University Press, 341pp

  • Le Traon P-Y, Antoine D, Bentamy A, Bonekamp H, Breivik LA, Chapron B, Corlett G, Dibarboure G, DiGiacomo P, Donlon C, Faugère Y, Font J, Girard-Ardhuin F, Gohin F, Johannessen JA, Kamachi M, Lagerloef G, Lambin J, Larnicol G, Le Borgne P, Leuliette E, Lindstrom E, Martin MJ, Maturi E, Miller L, Mingsen L, Morrow R, Reul N, Rio MH, Roquet H, Santoleri R, Wilkin J (2015) Use of satellite observations for operational oceanography: recent achievements and future prospects. J Oper Oceanogr 8(S1):12–27

    Google Scholar 

  • Mentaschi L, Besio G, Cassola F, Mazzino A (2013) Problems in RMSE-based wave model validations. Ocean Model 72:53–58

    Article  Google Scholar 

  • Mínguez R, Espejo A, Tomás A, Méndez FJ, Losada IJ (2011) Directional calibration of wave reanalysis databases using instrumental data. J Atmos Ocean Technol. https://doi.org/10.1175/JTECH-D-11-00008.1

    Article  Google Scholar 

  • Psaraftis HN, Kontovas CA (2014) Ship speed optimization: concepts, models and combined speedrouting scenarios. Transp Res Part C: Emerging Technologies 44:52–69. https://doi.org/10.1016/j.trc.2014.03.001

    Article  Google Scholar 

  • Queffeulou P, Croizé-Fillon D, 2017. Global altimeter SWH data set. Laboratoire d’Océanographie Physique et Spatiale IFREMER. Report available at ftp://ftp.ifremer.fr/ifremer/cersat/products/swath/altimeters/waves/documentation/altimeter_wave_merge__11.4.pdf

  • Reguero BG, Menéndez M, Méndez FJ, Mínguez R, Losada IJ (2012) A Global Ocean Wave (GOW) calibrated reanalysis from 1948 onwards. Coast Eng 65:38–55

    Article  Google Scholar 

  • Ribal A, Young IR (2019) 33 years of globally calibrated wave height and wind speed data based on altimeter observations. Nat-Sci Data 6(77):1–15

    Google Scholar 

  • Saetra Ø, Bidlot JR (2004) Potential benefits of using probabilistic forecasts for waves and marine winds based on the ECMWF Ensemble Prediction System. Wea Forecasting 19:673–689

    Article  Google Scholar 

  • Sepulveda HH, Queffeulou P, Ardhuin F (2015) Assessment of SARAL AltiKa wave height measurements relative to buoy, Jason-2 and Cryosat-2 data. Mar Geod 38(S1):449–465

    Article  Google Scholar 

  • Stopa JE, Cheung KF (2014) Intercomparison of wind and wave data from the ECMWF Reanalysis Interim and the NCEP Climate Forecast System Reanalysis. Ocean Model 75:65–83

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106(D7):7183–7192

    Article  Google Scholar 

  • Tolman HL, 2016. User manual and system documentation of WAVEWATCH III version 5.16. NOAA/NWS/NCEP MMAB Tech. Note 329, 326 pp.

  • Tolman HL (1998) Validation of NCEP’s ocean winds for the use in wind wave models. Global Atmos Ocean Syst 6(3):243–268

    Google Scholar 

  • Tournadre J (2014) Anthropogenic pressure on the open ocean: the growth of ship traffic revealed by altimeter data analysis. Geophys Res Lett 41:7924–7932

    Article  Google Scholar 

  • Willmott C, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30(79–82):2005

    Google Scholar 

  • Young IR, Holland GJ (1996) Atlas of the oceans: wind and wave climate. Pergamon Press, New York, p 241

    Google Scholar 

  • Zhou X, Zhu Y, Hou D, Luo Y, Peng J, Wobus R (2017) Performance of the new NCEP Global Ensemble Forecast System in a parallel experiment. Bull Am Meteorol Soc. https://doi.org/10.1175/WAF-D-17-0023.1

    Article  Google Scholar 

  • Zieger S, Greenslade D, Kepert JD (2018) Wave ensemble forecast system for tropical cyclones in the Australian region. Ocean Dyn 68:603–625

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Todd Spindler, the GEFS atmospheric ensemble team at NCEP, and the Department of Atmospheric and Oceanic Sciences (AOSC) at the University of Maryland.

Funding

This work has been funded by the US National Weather Service Office of Science and Technology (NWS/OST), NOAA award number NA16NWS4680011, with further support in the last stage of development from Fundação para a Ciência e a Tecnologia (FCT – Portugal) under the project EXWAV (RD0504) number PTDC/EAM-OCE/31325/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Martins Campos.

Additional information

Responsible Editor: Clemente Augusto Souza Tanajura

This article is part of the Topical Collection on the 10th International Workshop on Modeling the Ocean (IWMO), Santos, Brazil, 25-28 June 2018

Data sources

NCEP’s Global Wave Ensemble Forecast

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/wave/prod

Altimeters

ftp://avisoftp.cnes.fr/AVISO/pub/

ftp://ftp.star.nesdis.noaa.gov/pub/sod/lsa/cs2igdr/

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos, R.M., Alves, JH.G., Penny, S.G. et al. Global assessments of the NCEP Ensemble Forecast System using altimeter data. Ocean Dynamics 70, 405–419 (2020). https://doi.org/10.1007/s10236-019-01329-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-019-01329-4

Keywords