Skip to main content
Log in

Impact of multiple tidal forcing on the simulation of the M2 internal tides in the northern South China Sea

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Previous studies have indicated that internal tides (ITs) in the South China Sea (SCS) are dominated by the M2, K1, and O1, among which intense nonlinear interaction occurs. In this study, the impact of multiple tidal forcing on the simulation of the M2 ITs in the northern SCS is investigated based on a primitive equation model. Under the same model settings except the forcing at open boundaries, the run forced by the M2 individually yields larger M2 tidal currents and baroclinic energy fluxes than observations and the run forced by the M2, K1, and O1 together, although the M2 barotropic tidal forcing is the same in the two runs. The M2 barotropic to baroclinic energy conversion in the Luzon Strait (LS) is almost comparable in the two runs, suggesting that it is not the cause for the differences between the two runs. Indeed, the intense nonlinear interaction between the M2 and diurnal ITs should account for the differences. Results show that the nonlinear interaction is more intense in the SCS Basin than the western Pacific. Therefore, more energy is transferred from the M2 to tri-diurnal ITs in the SCS Basin. In addition, the nonlinear interaction enhances the energy loss of the M2 ITs in the LS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10.

Similar content being viewed by others

References

  • Alford MH, MacKinnon JA, Nash JD, Simmons H, Pickering A, Klymak JM et al (2011) Energy flux and dissipation in Luzon Strait: two tales of two ridges. J Phys Oceanogr 41(11):2211–2222

    Google Scholar 

  • Alford MH, Peacock T, MacKinnon JA, Nash JD, Buijsman MC, Centurioni LR et al (2015) The formation and fate of internal waves in the South China Sea. Nature 521(7550):65–69

    Google Scholar 

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. National Geophysical Data Center, NOAA, Boulder

    Google Scholar 

  • Beardsley RC, Duda TF, Lynch JF, Irish JD, Ramp SR, Chiu CS et al (2004) Barotropic tide in the northeast South China Sea. IEEE J Ocean Eng 29(4):1075–1086

    Google Scholar 

  • Buijsman MC, Legg S, Klymak J (2012) Double-ridge internal tide interference and its effect on dissipation in Luzon Strait. J Phys Oceanogr 42(8):1337–1356

    Google Scholar 

  • Buijsman MC, Klymak JM, Legg S, Alford MH, Farmer D, MacKinnon JA et al (2014) Three-dimensional double-ridge internal tide resonance in Luzon Strait. J Phys Oceanogr 44(3):850–869

    Google Scholar 

  • Cambon G, Marchesiello P, Penven P, Debreu L, Benshila R, & Jullien S (n.d.) CROCO user guide. http://www.croco-ocean.org/documentation/roms_agrif- user-guide/. Accessed 9 March 2018

  • Cao AZ, Wang DS, Lv XQ (2015a) Harmonic analysis in the simulation of multiple constituents: determination of the optimum length of time series. J Atmos Ocean Technol 32(5):1112–1118

    Google Scholar 

  • Cao AZ, Li BT, Lv XQ (2015b) Extraction of internal tidal currents and reconstruction of full-depth tidal currents from mooring observations. J Atmos Ocean Technol 32(7):1414–1424

    Google Scholar 

  • Cao A, Guo Z, Lv X, Song J, Zhang J (2017) Coherent and incoherent features, seasonal behaviors and spatial variations of internal tides in the northern South China Sea. J Mar Syst 172:75–83

    Google Scholar 

  • Cao A, Guo Z, Song J, Lv X, He H, Fan W (2018) Near-inertial waves and their underlying mechanisms based on the South China Sea internal wave experiment (2010–2011). J Geophys Res Oceans 123(7):5026–5040

    Google Scholar 

  • Carter GS, Merrifield MA, Becker JM et al (2008) Energetics of M2 barotropic-to-baroclinic tidal conversion at the Hawaiian Islands. J Phys Oceanogr 38(10):2205–2223

    Google Scholar 

  • Chen G, Hou Y, Chu X (2011) Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure. J Geophy Res 116(C06018). https://doi.org/10.1029/2010JC006716

  • Cummins PF, Oey LY (1997) Simulation of barotropic and baroclinic tides off northern British Columbia. J Phys Oceanogr 27(5):762–781

    Google Scholar 

  • Di Lorenzo E, Young WR, Smith SL (2006) Numerical and analytical estimates of M 2 tidal conversion at steep oceanic ridges. J Phys Oceanogr 36(6):1072–1084

    Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19(2):183–204

    Google Scholar 

  • Fang G, Kwok YK, Yu K, Zhu Y (1999) Numerical simulation of principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf of Thailand. Cont Shelf Res 19(7):845–869

    Google Scholar 

  • Guan S, Zhao W, Huthnance J, Tian J, Wang J (2014) Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J Geophys Res Oceans 119(5):3134–3157

    Google Scholar 

  • Guo P, Fang W, Liu C, Qiu F (2012) Seasonal characteristics of internal tides on the continental shelf in the northern South China Sea. J Geophys Res 117(C04023) https://doi.org/10.1029/2011JC007215

    Google Scholar 

  • Guo Z, Cao A, Lü X (2018) Seasonal variation and modal content of internal tides in the northern South China Sea. J Oceanol Limnol 36(3):651–662

    Google Scholar 

  • Jan S, Lien RC, Ting CH (2008) Numerical study of baroclinic tides in Luzon Strait. J Oceanogr 64(5):789

    Google Scholar 

  • Kang D, Fringer O (2012) Energetics of barotropic and baroclinic tides in the Monterey Bay area. J Phys Oceanogr 42(2):272–290

    Google Scholar 

  • Kerry CG, Powell BS, Carter GS (2013) Effects of remote generation sites on model estimates of M 2 internal tides in the Philippine Sea. J Phys Oceanogr 43(1):187–204

    Google Scholar 

  • Kerry CG, Powell BS, Carter GS (2014) The impact of subtidal circulation on internal tide generation and propagation in the Philippine Sea. J Phys Oceanogr 44(5):1386–1405

    Google Scholar 

  • Kerry CG, Powell BS, Carter GS (2016) Quantifying the incoherent M2 internal tide in the Philippine Sea. J Phys Oceanogr 46(8):2483–2491

    Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32(4):363–403

    Google Scholar 

  • Huan Lee, I, Wang Y.‐H, Yang Y, Wang D.‐P (2012) Temporal variability of internal tides in the northeast South China Sea. J Geophys Res 117(C02013). https://doi.org/10.1029/2011JC007518

    Google Scholar 

  • Li Q (2014) Numerical assessment of factors affecting nonlinear internal waves in the South China Sea. Prog Oceanogr 121:24–43

    Google Scholar 

  • Li B, Cao A, Lv X (2015) Three-dimensional numerical simulation of M 2 internal tides in the Luzon Strait. Acta Oceanol Sin 34(11):55–62

    Google Scholar 

  • Liu J, He Y, Wang D, Liu T, Cai S (2015) Observed enhanced internal tides in winter near the Luzon Strait. J Geophys Res Oceans 120(10):6637–6652

    Google Scholar 

  • Ma BB, Lien RC, Ko DS (2013) The variability of internal tides in the Northern South China Sea. J Oceanogr 69(5):619–630

    Google Scholar 

  • Miao C, Chen H, Lü X (2011) An isopycnic-coordinate internal tide model and its application to the South China Sea. Chin J Oceanol Limnol 29(6):1339

    Google Scholar 

  • Nash JD, Alford MH, Kunze E (2005) Estimating internal wave energy fluxes in the ocean. J Atmos Ocean Technol 22(10):1551–1570

    Google Scholar 

  • Niwa Y, Hibiya T (2004) Three‐dimensional numerical simulation of M2 internal tides in the East China Sea. J Geophys Res 109(C04027)https://doi.org/10.1029/2003JC001923

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28(8):929–937

    Google Scholar 

  • Pickering A, Alford M, Nash J, Rainville L, Buijsman M, Ko DS, Lim B (2015) Structure and variability of internal tides in Luzon Strait. J Phys Oceanogr 45(6):1574–1594

    Google Scholar 

  • Rudnick DL, Boyd TJ, Carter GS et al (2003) From Tides to Mixing Along the Hawaiian Ridge. Science 301 (5631):355-357

    Google Scholar 

  • Shang X, Liu Q, Xie X, Chen G, Chen R (2015) Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep-Sea Res PT I 98:43–52

    Google Scholar 

  • Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep-Sea Res PT II 51(25-26):3043–3068

    Google Scholar 

  • Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24(16):1745–1760

    Google Scholar 

  • Wang X, Peng S, Liu Z, Huang RX, Qian YK, Li Y (2016) Tidal mixing in the South China Sea: an estimate based on the internal tide energetics. J Phys Oceanogr 46(1):107–124

    Google Scholar 

  • Wang Y, Xu Z, Yin B, Hou Y, Chang H (2018) Long-range radiation and interference pattern of multisource M2 internal tides in the Philippine Sea. J Geophys Res Oceans 123(8):5091–5112

    Google Scholar 

  • Xie X.‐H, Chen G.‐Y, Shang X.‐D, Fang W.‐D (2008) Evolution of the semidiurnal (M2) internal tide on the continental slope of the northern South China Sea. Geophys Res Lett 35(L13604) https://doi.org/10.1029/2008GL034179

  • Xie X, Shang X, Chen G (2010) Nonlinear interactions between internal tidal waves in the northeastern South China Sea. Chin J Oceanol Limnol 28(5):996–1001

    Google Scholar 

  • Xu Z, Yin B, Hou Y, Xu Y (2013) Variability of internal tides and near-inertial waves on the continental slope of the northwestern South China Sea. J Geophys Res Oceans 118(1):197–211

    Google Scholar 

  • Xu Z, Yin B, Hou Y, Liu AK (2014) Seasonal variability and north-south asymmetry of internal tides in the deep basin west of the Luzon Strait. J Mar Syst 134:101–112

    Google Scholar 

  • Xu Z, Liu K, Yin B, Zhao Z, Wang Y, Li Q (2016) Long-range propagation and associated variability of internal tides in the South China Sea. J Geophys Res Oceans 121(11):8268–8286

    Google Scholar 

  • Yang B, Hou Y, Hu P, Liu Z, Liu Y (2015) Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. J Geophys Res Oceans 120(5):3817–3836

    Google Scholar 

  • Yang Q, Zhao W, Liang X, Tian J (2016) Three-dimensional distribution of turbulent mixing in the South China Sea. J Phys Oceanogr 46(3):769–788

    Google Scholar 

  • Zhang Z, Zhao W, Qiu B, Tian J (2017) Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. J Phys Oceanogr 47(6):1243–1259

    Google Scholar 

  • Zhao Z (2014) Internal tide radiation from the Luzon Strait. J Geophys Res Oceans 119(8):5434–5448

    Google Scholar 

  • Zilberman NV, Merrifield MA, Carter GS, Luther DS, Levine MD, Boyd TJ (2011) Incoherent nature of M2 internal tides at the Hawaiian Ridge. J Phys Oceanogr 41(11):2021–2036

    Google Scholar 

  • Zu T, Gan J, Erofeeva SY (2008) Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Res PT I 55(2):137–154

    Google Scholar 

Download references

Acknowledgments

Valuable suggestions from two anonymous reviewers are gratefully acknowledged.

Funding

This study is supported by the National Key Research and Development Program of China through grant 2017YFA0604102, and the National Natural Science Foundation of China through grant 41806012. This study is also supported by the Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology through grant 2019A01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anzhou Cao.

Additional information

Responsible Editor: Guoping Gao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Cao, A., Lv, X. et al. Impact of multiple tidal forcing on the simulation of the M2 internal tides in the northern South China Sea. Ocean Dynamics 70, 187–198 (2020). https://doi.org/10.1007/s10236-019-01324-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-019-01324-9

Keywords

Navigation