Skip to main content
Log in

Extracting Lagrangian coherent structures in the Kuroshio current system

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we propose to extract Lagrangian coherent structures (LCSs) based on MADT data to describe the structure of the Kuroshio Current System, and this method helps study the monthly variation in the intensity. By exploiting the improved variational principles, we extract LCSs through a geostrophic velocity vector field derived from the absolute dynamic topography. Specifically, we address hyperbolic LCSs and parabolic LCSs, with the former as the outer bounds of the jet flow and the latter as a more robust depiction of the jet axis. These LCSs delineate the jet with theoretical underpinnings, as opposed to common contours identified in an anecdotal manner. We employ the top 20% most repelling and attracting hyperbolic LCSs to approximate the outer bounds of the Kuroshio Current System, and these structures are apt to enclose the jet. Compared with the results of FTLEs and FSLEs, our results are more reliable. A comparison in the intensity based on the jet axis of months in 2012 demonstrates the effectiveness of our method in extracting LCSs. In situ data, such as drifter tracks and temperature-salinity profiles, are applied to validate the reliability of the axis and outer bounds extracted from the Kuroshio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Allshouse MR, Thiffeault JL (2012) Detecting coherent structures using braids. Physica D: Nonlinear Phenomena 241(2):95–105

    Article  Google Scholar 

  • Ambe D, Imawaki S, Uchida H, Ichikawa K (2004) Estimating the Kuroshio axis south of Japan using combination of satellite altimetry and drifting buoys. J Oceanogr 60(2):375–382

    Article  Google Scholar 

  • Armitage TW, Kwok R, Thompson AF, Cunningham G (2018) Dynamic topography and sea level anomalies of the Southern Ocean: variability and teleconnections. J Geophys Res Oceans 123(1):613–630

    Article  Google Scholar 

  • Beron-Vera FJ, Olascoaga MJ, Brown MG, Koçak H, Rypina II (2010) Invariant-tori-like Lagrangian coherent structures in geophysical flows. Chaos: An Interdisciplinary Journal of Nonlinear Science 20(1):017514

    Article  Google Scholar 

  • Beron-Vera FJ, Olascoaga MJ, Brown MG, Koçak H (2012) Zonal jets as meridional transport barriers in the subtropical and polar lower stratosphere. J Atmos Sci 69(2):753–767

    Article  Google Scholar 

  • Beron-Vera FJ, Hadjighasem A, Xia Q, Olascoaga MJ, Haller G (2018) Coherent Lagrangian swirls among submesoscale motions. Proc Natl Acad Sci, 201701392

  • Bettencourt JH, López C, Hernández-García E (2013) Characterization of coherent structures in three-dimensional turbulent flows using the finite-size Lyapunov exponent. Journal of Physics A: Mathematical and Theoretical 46(25):254022

    Article  Google Scholar 

  • Budišić M, Mezić I (2012) Geometry of the ergodic quotient reveals coherent structures in flows. Physica D: Nonlinear Phenomena 241(15):1255–1269

    Article  Google Scholar 

  • D’Ovidio F, Fernández V, Hernández–García E, López C (2004) Mixing structures in the Mediterranean sea from finite–size Lyapunov exponents. Geophys Res Lett 31(17)

  • Farazmand M, Haller G (2012) Computing Lagrangian coherent structures from their variational theory. Chaos: An Interdisciplinary Journal of Nonlinear Science 22(1):013128

    Article  Google Scholar 

  • Farazmand M, Haller G (2013) Attracting and repelling Lagrangian coherent structures from a single computation. Chaos: An Interdisciplinary Journal of Nonlinear Science 23(2):023101

    Article  Google Scholar 

  • Farazmand M, Haller G (2014) How coherent are the vortices of two-dimensional turbulence?. arXiv:1402.4835

  • Farazmand M, Blazevski D, Haller G (2014) Shearless transport barriers in unsteady two-dimensional flows and maps. Physica D: Nonlinear Phenomena 278:44–57

    Article  Google Scholar 

  • Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, sources, and sinks. Ann Rev Fluid Mech 41(1):253–282

    Article  Google Scholar 

  • Froyland G, Padberg-Gehle K (2012) Finite-time entropy: a probabilistic approach for measuring nonlinear stretching. Physica D: Nonlinear Phenomena 241(19):1612–1628

    Article  Google Scholar 

  • Froyland G, Padberg K, England MH, Treguier AM (2007) Detection of coherent oceanic structures via transfer operators. Phys Rev Lett 98(22):224503

    Article  Google Scholar 

  • Hadjighasem A, Farazmand M, Blazevski D, Froyland G, Haller G (2017) A critical comparison of Lagrangian methods for coherent structure detection. Chaos: An Interdisciplinary Journal of Nonlinear Science 27 (5):053104

    Article  Google Scholar 

  • Haller G (2002) Lagrangian coherent structures from approximate velocity data. Phys Fluids 14(6):1851–1861

    Article  Google Scholar 

  • Haller G (2011) A variational theory of hyperbolic Lagrangian coherent structures. Physica D: Nonlinear Phenomena 240(7):574–598

    Article  Google Scholar 

  • Haller G (2015) Lagrangian coherent structures. Ann Rev Fluid Mech 47:137–162

    Article  Google Scholar 

  • Haller G, Beron-Vera FJ (2012) Geodesic theory of transport barriers in two-dimensional flows. Physica D: Nonlinear Phenomena 241(20):1680–1702

    Article  Google Scholar 

  • Haller G, Hadjighasem A, Farazmand M, Huhn F (2016) Defining coherent vortices objectively from the vorticity. J Fluid Mech 795:136–173

    Article  Google Scholar 

  • Holland PR, Kwok R (2012) Wind-driven trends in Antarctic sea-ice drift. Nat Geosci 5(12):872

    Article  Google Scholar 

  • Jayne SR, Hogg NG, Waterman SN, Rainville L, Donohue KA, Watts DR, Chen S (2009) The Kuroshio extension and its recirculation gyres. Deep sea research part I: oceanographic research papers 56 (12):2088–2099

    Article  Google Scholar 

  • Joseph B, Legras B (2002) Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. J Atmos Sci 59(7):1198–1212

    Article  Google Scholar 

  • Karrasch D (2012) Comment on A variational theory of hyperbolic Lagrangian Coherent Structures, Physica D 240 (2011) 574–598. Physica D: Nonlinear Phenomena 241(17):1470–1473

    Article  Google Scholar 

  • Madrid JJ, Mancho AM (2009) Distinguished trajectories in time dependent vector fields. Chaos: An Interdisciplinary Journal of Nonlinear Science 19(1):013111

    Article  Google Scholar 

  • Malhotra N, Mezić I, Wiggins S (1998) Patchiness: a new diagnostic for Lagrangian trajectory analysis in time-dependent fluid flows. Int J Bifurcation Chaos 8(06):1053–1093

    Article  Google Scholar 

  • Morimoto A, Kojima S, Jan S, Takahashi D (2009) Movement of the Kuroshio axis to the northeast shelf of Taiwan during typhoon events. Estuar Coast Shelf Sci 82(3):547–552

    Article  Google Scholar 

  • Nan F, Xue H, Yu F (2015) Kuroshio intrusion into the South China Sea: a review. Prog Oceanogr 137:314–333

    Article  Google Scholar 

  • Onu K, Huhn F, Haller G (2015) LCS tool: a computational platform for Lagrangian coherent structures. J Comput Sci 7:26–36

    Article  Google Scholar 

  • Peacock T, Haller G (2013) Lagrangian coherent structures: the hidden skeleton of fluid flows. Phys Today 66(2):41–47

    Article  Google Scholar 

  • Qiu B (2002) The Kuroshio extension system: its large-scale variability and role in the midlatitude ocean-atmosphere interaction. J Oceanogr 58(1):57–75

    Article  Google Scholar 

  • Qiu B, Chen S (2005) Variability of the Kuroshio extension jet, recirculation gyre, and mesoscale eddies on decadal time scales. J Phys Oceanogr 35(11):2090–2103

    Article  Google Scholar 

  • Qiu B, Kelly KA (1993) Upper-ocean heat balance in the Kuroshio extension region. J Phys Oceanogr 23 (9):2027–2041

    Article  Google Scholar 

  • Rypina II, Pratt LJ (2017) Trajectory encounter volume as a diagnostic of mixing potential in fluid flows. Nonlinear Process Geophys 24(2):189–202

    Article  Google Scholar 

  • Rypina II, Brown MG, Beron-Vera FJ, Koçak H, Olascoaga MJ, Udovydchenkov IA (2007a) Robust transport barriers resulting from strong Kolmogorov-Arnold-Moser stability. Phys Rev Lett 98(10):104102

    Article  Google Scholar 

  • Rypina II, Brown MG, Beron-Vera FJ, Koçak H, Olascoaga MJ, Udovydchenkov IA (2007b) On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J Atmos Sci 64(10):3595–3610

    Article  Google Scholar 

  • Rypina II, Scott SE, Pratt LJ, Brown MG (2011) Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures. Nonlinear Process Geophys 18(6):977–987

    Article  Google Scholar 

  • Samelson RM (2013) Lagrangian motion, coherent structures, and lines of persistent material strain. Annu Rev Mar Sci 5(1):137– 163

    Article  Google Scholar 

  • Sasaki H, Klein P, Qiu B, Sasai Y (2014) Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nature Commun 5:5636

    Article  Google Scholar 

  • Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D: Nonlinear Phenomena 212 (3-4):271–304

    Article  Google Scholar 

  • Su Z (2017) Preconditioning of Antarctic maximum sea ice extent by upper ocean stratification on a seasonal timescale. Geophys Res Lett 44(12):6307–6315

    Article  Google Scholar 

  • Su Z, Ingersoll AP (2016) On the minimum potential energy state and the eddy size–constrained APE density. J Phys Oceanogr 46(9):2663–2674

    Article  Google Scholar 

  • Su Z, Stewart AL, Thompson AF (2014) An idealized model of Weddell Gyre export variability. J Phys Oceanogr 44(6):1671– 1688

    Article  Google Scholar 

  • Su Z, Ingersoll AP, Stewart AL, Thompson AF (2016a) Ocean convective available potential energy. Part I: concept and calculation. J Phys Oceanogr 46(4):1081–1096

    Article  Google Scholar 

  • Su Z, Ingersoll AP, Stewart AL, Thompson AF (2016b) Ocean convective available potential energy. Part II: energetics of thermobaric convection and thermobaric cabbeling. J Phys Oceanogr 46(4):1097–1115

    Article  Google Scholar 

  • Su Z, Wang J, Klein P, Thompson AF, Menemenlis D (2018) Ocean submesoscales as a key component of the global heat budget. Nat Commun 9(1):775

    Article  Google Scholar 

  • Tang W, Chan PW, Haller G (2011) Lagrangian coherent structure analysis of terminal winds detected by lidar. Part II: structure evolution and comparison with flight data. J Appl Meteorol Climatol 50(10):2167–2183

    Article  Google Scholar 

  • Torres HS, Klein P, Menemenlis D, Qiu B, Su Z, Wang J, Fu LL (2018) Partitioning ocean motions into balanced motions and internal gravity waves: A modeling study in anticipation of future space missions. J Geophys Res Oceans 123(11):8084–8105

    Article  Google Scholar 

  • Tseng YH, Shen ML, Jan S, Dietrich DE, Chiang CP (2012) Validation of the Kuroshio current system in the dual-domain Pacific Ocean model framework. Prog Oceanogr 105:102–124

    Article  Google Scholar 

  • Williams MO, Rypina II, Rowley CW (2015) Identifying finite-time coherent sets from limited quantities of Lagrangian data. Chaos: An Interdisciplinary Journal of Nonlinear Science 25(8):087408

    Article  Google Scholar 

  • Yamashiro T, Kawabe M (1996) Monitoring of position of the Kuroshio axis in the Tokara strait using sea level data. J Oceanogr 52(6):675–687

    Article  Google Scholar 

  • Yamashiro T, Kawabe M (2002) Variations of the Kuroshio axis south of Kyushu in relation to the large meander of the Kuroshio. J Oceanogr 58(3):487–503

    Article  Google Scholar 

Download references

Acknowledgements

The drifter data were obtained from The NOAA/Atlantic Oceanographic and Meteorological Laboratory’s Global Drifter Program (ftp://ftp.aoml.noaa.gov/pub/phod/buoydata/). The temperature and salinity data across the KCS were obtained from oceanographic observation data at the Japan Oceanographic Data Center (http://www.jodc.go.jp/jodcweb/index.html).

Funding

This research was jointly supported by the National Key R&D Program of China under Grant 2016YFC1401008, the Natural Science Foundation of China under Grants U1606405 and 61361136001, and the Fundamental Research Funds for the Central Universities (No. 201762005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Chen.

Additional information

Responsible Editor: Alejandro Orfila

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, F., He, Q., Liu, Z. et al. Extracting Lagrangian coherent structures in the Kuroshio current system. Ocean Dynamics 69, 641–656 (2019). https://doi.org/10.1007/s10236-019-01262-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-019-01262-6

Keywords

Navigation