Modelling dynamics of the estuarine turbidity maximum and local net deposition

Abstract

Net deposition in estuaries is often linked to the estuarine turbidity maximum zones, in which fine, cohesive sediments accumulate due to residual transport by the estuarine circulation and tidal asymmetries. Sediments deposit in fairways or harbours, which creates high maintenance dredging costs and the need for better prediction of dredging hotspots with process-based numerical models. In this paper, a new efficient modelling approach is presented which enables the simulation of the ETM formation, its seasonal dynamics and the local sedimentation. A 3D baroclinic large-scale estuary model with a characteristic sediment fraction with simplified sediment transport properties is used with realistic boundary conditions, but without initial sediment distribution. This approach is referred to as supply-limited, regarding the ETM formation by residual transport. A dynamic equilibrium between residual sediment import from the open boundaries, accumulation and local sedimentation establishes in the model. This is achieved by combining the large-scale supply-limited model with an extended bed exchange formulation (2-Layer-Concept). A model of the Weser estuary is used as case study to reproduce and analyse the ETM formation and the resulting sedimentation simulated with this approach. The results are compared with the equivalent sediment concentration of turbidity measurements and dredging volumes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Allen GP, Salomon JC, Bassoullet P, Du Penhoat Y, de Grandpre C (1980) Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment Geol 26(1980):S. 69–S. 90 graph. Darst

    Article  Google Scholar 

  2. BAW (2012). Validierung des Jade-Weser-Basismodells 2012 für das Verfahren UnTRIM2007-SediMorph: Teilbericht 1: Hydrodynamik und Salztransport (BAW-Bericht B3955.02.10.10048.1-4, in preparation), Bundesanstalt für Wasserbau

  3. Becker, M. (2011). Suspended sediment transport and fluid mud dynamics in tidal estuaries, Dissertation, Bremen, University Bremen

  4. Berlamont J, Ockenden M, Toorman E, Winterwerp J (1993) The characterisation of cohesive sediment properties. Coast Eng 21(1–3):105–128

    Article  Google Scholar 

  5. BfG (2014a). Produktblatt: ALS-Befliegungen Unter-/Außenweser 2012-2015: Produkt: Digitales Oberflächenmodell (DOM) 2012

  6. BfG (2014b). Sedimentmanagementkonzept Tideweser: Untersuchung im Auftrag der WSA Bremen und Bremerhaven, Bericht 1794, Koblenz

  7. Black KS, Tolhurst TJ, Paterson DM, Hagerthey SE (2002) Working with natural cohesive sediments. J Hydraul Eng 128(1):2–8

    Article  Google Scholar 

  8. Brenon I, Le Hir P (1999) Modelling the turbidity maximum in the seine estuary (France). Identification of formation processes. Estuar Coast Shelf Sci 49(4):525–544

    Article  Google Scholar 

  9. Burchard H, Hetland RD (2010) Quantifying the contributions of tidal straining and gravitational circulation to residual circulation in periodically stratified tidal estuaries. J Phys Oceanogr 40(6):1243–1262

    Article  Google Scholar 

  10. Burchard H, Schuttelaars HM, Ralston DK (2018) Sediment trapping in estuaries. Annu Rev Mar Sci 10(1):371–395

    Article  Google Scholar 

  11. van der Wegen M, Jaffe BE, Roelvink JA (2011) Process-based, morphodynamic hindcast of decadal deposition patterns in San Pablo Bay, California. J Geophys Res 116(F2):1856–1887. https://doi.org/10.1029/2009JF001614

  12. Downing J (2006) Twenty-five years with OBS sensors. The good, the bad, and the ugly. Cont Shelf Res 26(17):2299–2318

    Article  Google Scholar 

  13. DWD (2013). Wind measurement at station Alte Weser, Deutscher Wetterdienst

  14. Dyer KR (1973) Estuaries: a physical introduction. A Wiley-Interscience Publication, Wiley, London

    Google Scholar 

  15. Dyer KR (1988), Fine sediment particle transport in estuaries, in Dronkers J and van Leussen W (Eds.), Physical processes in estuaries: [papers presented at an International Symposium on Physical Processes in Estuaries, held Sept. 9–12, 1986, in the Netherlands], Springer, Berlin, pp. 295–310

  16. Fanger HU (1986). MASEX ‘83, eine Untersuchung über die Trübungszone der Unterweser, GKSS, 86/E/6, GKSS-Forschungszentrum, Geesthacht

  17. Geyer WR, MacCready P (2014) The estuarine circulation. Annu Rev Fluid Mech 46(1):175–197

    Article  Google Scholar 

  18. Grabemann I. (1991). Die Trübungszone im Weser-Ästuar: Messungen und Interpretation, Dissertation, Hamburg, Universität Hamburg

  19. Grabemann I, Krause G (1989) Transport processes of suspended matter derived from time series in a tidal estuary. J Geophys Res 94:14373

    Article  Google Scholar 

  20. Grabemann I, Krause G (2001) On different time scales of suspended matter dynamics in the Weser estuary. Estuaries 24(5):688–698

    Article  Google Scholar 

  21. Grabemann I, Kappenberg J, Krause G (1995) Aperiodic variations of the turbidity maxima of two German coastal plain estuaries. Neth J Aquat Ecol 29(3–4):217–227

    Article  Google Scholar 

  22. Grabemann I, Uncles RJ, Krause G, Stephens JA (1997) Behaviour of turbidity maxima in the Tamar (U.K.) and Weser (F.R.G.) estuaries. Estuar Coast Shelf Sci 45(2):235–246

    Article  Google Scholar 

  23. Grabowski RC, Droppo IG, Wharton G (2011) Erodibility of cohesive sediment: the importance of sediment properties. Earth Sci Rev 105(3–4):101–120

    Article  Google Scholar 

  24. Grasso F, Verney R, Le Hir P, Thouvenin B, Schulz E, Kervella Y, Khojasteh Pour Fard I, Lemoine J-P, Dumas F, Garnier V (2018) Suspended sediment dynamics in the macrotidal seine estuary (France). 1. Numerical modeling of turbidity maximum dynamics. J Geophys Res Oceans 123(1):558–577

    Article  Google Scholar 

  25. Hesse RF (2018). Zum Transportverhalten kohäsiver Sedimente in Ästuaren, Dissertation, in progress, Technische Universität Hamburg

  26. Heyer H and Schrottke K (2013). Aufbau von integrierten Modellsystemen zur Analyse der langfristigen Morphodynamik in der Deutschen Bucht AufMod: Gemeinsamer Abschlussbericht für das Gesamtprojekt mit Beiträgen aus allen 7 Teilprojekten

  27. Holliday CP, Rasmussen TC and Miller WP (2003), Establishing the relationship between turbidity and total suspended sediment concentration, Proceedings of the 2003 Georgia Water Resources Conference

  28. Jay DA, Musiak JD (1994) Particle trapping in estuarine tidal flows. J Geophys Res 99:445–461

    Article  Google Scholar 

  29. Kappenberg J, Grabemann I (2001) Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser estuaries. Estuaries 24(5):699

    Article  Google Scholar 

  30. van Kessel T, de Boer G and Boderie P (2009). Calibration suspended sediment model Markermeer

    Google Scholar 

  31. van Kessel T, Winterwerp H, van Prooijen B, van Ledden M, Borst W (2011) Modelling the seasonal dynamics of SPM with a simple algorithm for the buffering of fines in a sandy seabed. Cont Shelf Res 31(10):124–134

    Article  Google Scholar 

  32. Kösters F, Grabemann I and Schubert R (2014), On SPM dynamics in the turbidity maximum zone of the Weser estuary, in Kuratorium für Forschung im Küsteningenieurwesen (Ed.), Die Küste: Archiv für Forschung und Technik an der Nord- und Ostsee ; Archive for Research and Technology on the North Sea and Baltic Coast, Modelling, 81 (2014), pp. 393–408

  33. Lang G (1990). Zur Schwebstoffdynamik von Trübungszonen in Ästuarien, Dissertation, Hannover, Universität Hannover

  34. Lange D, Müller H, Piechotta F and Schubert R (2008), The Weser Estuary, in Kuratorium für Forschung im Küsteningenieurwesen (Ed.), Die Küste: Archiv für Forschung und Technik an der Nord- und Ostsee ; Archive for Research and Technology on the North Sea and Baltic Coast, ICCE, Vol. 74, pp. 275–287

  35. Le Hir P, Cayocca F, Waeles B (2011) Dynamics of sand and mud mixtures. A multiprocess-based modelling strategy. Cont Shelf Res 31(10):S135–S149

    Article  Google Scholar 

  36. Lesser GR, Roelvink JA, van Kester JATM, Stelling GS (2004) Development and validation of a three-dimensional morphological model. Coast Eng 51(8):883–915

    Article  Google Scholar 

  37. van Leussen W (1994) Estuarine macroflocs and their role in fine-grained sediment transport, Dissertation, Universiteit Utrecht, Faculteit Aardwetenschappen, Ministry of Transport, Public Works and Water Management, Directorate-General of Public Works and Water Management, Den Haag. ISBN 90-393-0410-6

  38. van Leussen W (2011) Macroflocs, fine-grained sediment transports, and their longitudinal variations in the Ems estuary. Ocean Dyn 61(2–3):387–401

    Article  Google Scholar 

  39. Malcherek A (1995). Mathematische Modellierung von Strömungen und Stofftransportprozessen in Ästuaren, Dissertation, Hannover, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen der Universität Hannover

  40. van Maren DS, Winterwerp JC, Decrop B, Wang ZB, Vanlede J (2011) Predicting the effect of a current deflecting wall on harbour siltation. Cont Shelf Res 31(10, Supplement):S182–S198

    Article  Google Scholar 

  41. van Maren DS, van Kessel T, Cronin K, Sittoni L (2015) The impact of channel deepening and dredging on estuarine sediment concentration. Cont Shelf Res 95:1–14

    Article  Google Scholar 

  42. Maushake C and Grünler S (2015), personal communication

  43. Mueller A, Puls W (1996) Modelling of suspended matter transport in tidal rivers. Adv Limnol 47(1996):S.343–S.351 96/E/17

    Google Scholar 

  44. Papenmeier S, Schrottke K, Bartholomä A, Flemming BW (2013) Sedimentological and rheological properties of the water–solid bed interface in the Weser and Ems estuaries, North Sea, Germany. Implications for fluid mud classification. J Coast Res 289:797–808

    Article  Google Scholar 

  45. Pejrup M, Mikkelsen OA (2010) Factors controlling the field settling velocity of cohesive sediment in estuaries. Estuar Coast Shelf Sci 87(2):177–185

    Article  Google Scholar 

  46. Rietmöller R, Fanger H-U, Grabemann I, Krasemann, HL, Ohm K, Böning J, Neumann LJR, Lang G, Markofsky M and Schubert R (1988), Hydrographic measurements in the turbidity zone of the Weser estuary, in Dronkers J and van Leussen W (Eds.), Physical processes in estuaries: [papers presented at an International Symposium on Physical Processes in Estuaries, held Sept. 9–12, 1986, in the Netherlands], Springer, Berlin

  47. Sanford LP (2008) Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring. Comput Geosci 34(10):1263–1283

    Article  Google Scholar 

  48. Schrottke K, Becker M, Bartholomä A, Flemming BW, Hebbeln D (2006) Fluid mud dynamics in the Weser estuary turbidity zone tracked by high-resolution side-scan sonar and parametric sub-bottom profiler. Geo-Mar Lett 26(3):185–198

    Article  Google Scholar 

  49. Schulz E, Grasso F, Le Hir P, Verney R, Thouvenin B (2018) Suspended sediment dynamics in the macrotidal seine estuary (France). 2. Numerical modeling of sediment fluxes and budgets under typical hydrological and meteorological conditions. J Geophys Res Oceans 123(1):578–600

    Article  Google Scholar 

  50. Simpson JH, Brown J, Matthews J, Allen G (1990) Tidal straining, density currents, and stirring in the control of estuarine stratification. Estuaries 13(2):125–132

    Article  Google Scholar 

  51. Winterwerp JC (2002) On the flocculation and settling velocity of estuarine mud. Cont Shelf Res 22(9):1339–1360

    Article  Google Scholar 

  52. Winterwerp JC, van Kesteren WGM (eds) (2004) Introduction to the physics of cohesive sediment in the marine environment, Developments in sedimentology, Vol 56, 1 ed., Elsevier, Amsterdam. ISBN 0444515534

  53. (WSV: Wasser- und SchifffahrtsVerwaltung des Bundes) (2014) River runoff, salinity and suspended sediment concentration measurement at station Intschede (INS): provided by (WISKI: Wasserstraßeninformationssystem), Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)

  54. (WSV: Wasser- und SchifffahrtsVerwaltung des Bundes) (2015) Turbidity measurements stations Bremerhaven Alter Leuchtturm (BAL), Nordenham Unterfeuer (NUF), Rechtenfleth (RFL), Brake (BRA), Elsfleth (EFL): provided by (WISKI: Wasserstraßeninformationssystem), Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV)

Download references

Funding

This work was funded by the research and development programme of the Federal Waterways Engineering and Research Institute (Bundesanstalt für Wasserbau, BAW).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roland F. Hesse.

Additional information

This article is part of the Topical Collection on the 14th International Conference on Cohesive Sediment Transport in Montevideo, Uruguay 13-17 November 2017

Responsible Editor: Francisco Pedocchi

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hesse, R.F., Zorndt, A. & Fröhle, P. Modelling dynamics of the estuarine turbidity maximum and local net deposition. Ocean Dynamics 69, 489–507 (2019). https://doi.org/10.1007/s10236-019-01250-w

Download citation

Keywords

  • Fine cohesive sediments
  • Suspended sediment transport
  • Bed exchange
  • Supply-limited model approach
  • 2-Layer-Concept
  • Sedimentation
  • Estuarine turbidity maximum (ETM)
  • Seasonal sediment dynamics
  • Estuary
  • Weser