Developing configuration of WRF model for long-term high-resolution wind wave hindcast over the North Atlantic with WAVEWATCH III

Abstract

The spatial resolution of wind forcing fields is critical for modeling ocean surface waves. We analyze here the performance of the non-hydrostatic numerical weather prediction system WRF-ARW (Weather Research and Forecasting) run with a 14-km resolution for hindcasting wind waves in the North Atlantic. The regional atmospheric model was run in the domain from 20° N to 70° N in the North Atlantic and was forced with ERA-Interim reanalysis as initial and boundary conditions in a spectral nudging mode. Here, we present the analysis of the impact of spectral nudging formulation (cutoff wavelengths and depth through which full weighting from reanalysis data is applied) onto the performance of the modeled 10-m wind speed and wind wave fields for 1 year (2010). For modeling waves, we use the third-generation spectral wave model WAVEWATCH III. The sensitivity of the atmospheric and wave models to the spectral nudging formulation is investigated via the comparison with reanalysis and observational data. The results reveal strong and persistent agreement with reanalysis data during all seasons within the year with well-simulated annual cycle and regional patterns independently of the nudging parameters that were tested. Thus, the proposed formulation of the nudging provides a reliable framework for future long-term experiments aiming at hindcasting climate variability in the North Atlantic wave field. At the same time, dynamical downscaling allows for simulation of higher waves in coastal regions, specifically near the Greenland east coast likely due to a better representation of the mesoscale atmospheric dynamics in this area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Ardhuin F, Rogers E, Babanin A et al (2010) Semi-empirical dissipation source functions for ocean waves: part I, definition, calibration and validation. J Phys Oceanogr 40:1917–1941. https://doi.org/10.1175/2010JPO4324.1

    Article  Google Scholar 

  2. Ardhuin F, Hanafin J, Quilfen Y et al (2011) Calibration of the "IOWAGA" global wave hindcast (1991–2011) using ECMWF and CFSR winds. In: 12th International workshop on wave hindcasting and forecasting. Kohala Coast, Hawaii, p 13

    Google Scholar 

  3. Ardhuin F, Roland A, Dumas F et al (2012) Numerical wave modeling in conditions with strong currents: dissipation, refraction, and relative wind. J Phys Oceanogr. https://doi.org/10.1175/JPO-D-11-0220.1

    Article  Google Scholar 

  4. Balmaseda MA, Hernandez F, Storto A, Palmer MD, Alves O, Shi L, Smith GC, Toyoda T, Valdivieso M, Barnier B, Behringer D, Boyer T, Chang YS, Chepurin GA, Ferry N, Forget G, Fujii Y, Good S, Guinehut S, Haines K, Ishikawa Y, Keeley S, Köhl A, Lee T, Martin MJ, Masina S, Masuda S, Meyssignac B, Mogensen K, Parent L, Peterson KA, Tang YM, Yin Y, Vernieres G, Wang X, Waters J, Wedd R, Wang O, Xue Y, Chevallier M, Lemieux JF, Dupont F, Kuragano T, Kamachi M, Awaji T, Caltabiano A, Wilmer-Becker K, Gaillard F (2015) The ocean reanalyses intercomparison project (ORA-IP). J Oper Oceanogr 8:s80–s97. https://doi.org/10.1080/1755876X.2015.1022329

    Article  Google Scholar 

  5. Banks RF, Tiana-Alsina J, Baldasano JM, Rocadenbosch F, Papayannis A, Solomos S, Tzanis CG (2016) Sensitivity of boundary-layer variables to PBL schemes in the WRF model based on surface meteorological observations, lidar, and radiosondes during the HygrA-CD campaign. Atmos Res 176-177:185–201. https://doi.org/10.1016/j.atmosres.2016.02.024

    Article  Google Scholar 

  6. Beljaars ACM (1995) The parametrization of surface fluxes in large-scale models under free convection. Q J R Meteorol Soc 121:255–270. https://doi.org/10.1002/qj.49712152203

    Article  Google Scholar 

  7. Benetazzo A, Carniel S, Sclavo M, Bergamasco A (2013) Wave-current interaction: effect on the wave field in a semi-enclosed basin. Ocean Model 70:152–165. https://doi.org/10.1016/j.ocemod.2012.12.009

    Article  Google Scholar 

  8. Bidlot J-R, Wittmann P, Fauchon M, et al (2007) Inter-comparison of operational wave forecasting systems. In: Proceedings of the 10th international workshop on wave hindcasting and forecasting and coastal hazard symposium. pp 1–22

  9. Buckley BW, Leslie LM (2000) The Australian boxing day storm of 1998—synoptic description and numerical simulations. Weather Forecast 15:543–558. https://doi.org/10.1175/1520-0434(2000)015<0543:TABDSO>2.0.CO;2

    Article  Google Scholar 

  10. Caires S, Sterl A (2005) 100-year return value estimates for ocean wind speed and significant wave height from the ERA-40 data. J Clim 18:1032–1048. https://doi.org/10.1175/JCLI-3312.1

    Article  Google Scholar 

  11. Casas-Prat M, Wang XL, Swart N (2018) CMIP5-based global wave climate projections including the entire Arctic Ocean. Ocean Model 123:66–85. https://doi.org/10.1016/j.ocemod.2017.12.003

    Article  Google Scholar 

  12. Cavaleri L (2009) Wave modeling — missing the peaks. J Phys Ocean 39:2757–2778. https://doi.org/10.1175/2009JPO4067.1

    Article  Google Scholar 

  13. Chao Y, Li Z, Farrara JD, Hung P (2009) Blending sea surface temperatures from multiple satellites and in situ observations for coastal oceans. J Atmos Ocean Technol 26:1415–1426. https://doi.org/10.1175/2009JTECHO592.1

    Article  Google Scholar 

  14. Chawla A, Spindler DM, Tolman HL (2011) WAVEWATCH III Hindcasts with re-analysis winds. Initial report on model setup, NCEP Technical Note, pp. 1–100

  15. Chawla A, Spindler DM, Tolman HL (2013) Validation of a thirty year wave hindcast using the climate forecast system reanalysis winds. Ocean Model 70:189–206. https://doi.org/10.1016/j.ocemod.2012.07.005

    Article  Google Scholar 

  16. Chelton DB, Wentz F (2005) Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull Am Meteorol Soc 86:1097–1116. https://doi.org/10.1175/BAMS-86-8-1097

    Article  Google Scholar 

  17. Colle B a, Mass CF (1998) Windstorms along the Western Side of the Washington Cascade Mountains. Part I: A high-resolution observational and modeling study of the 12 February 1995 event. Mon Weather Rev 126:28–52. https://doi.org/10.1175/1520-0493(1998)126<0028:WATWSO>2.0.CO;2

    Article  Google Scholar 

  18. Condron A, Bigg GR, Renfrew IA (2006) Polar mesoscale cyclones in the Northeast Atlantic: comparing climatologies from ERA-40 and satellite imagery. Mon Weather Rev 134:1518–1533. https://doi.org/10.1175/MWR3136.1

    Article  Google Scholar 

  19. Cox AT, Swail VR (2001) A global wave hindcast over the period 1958-1997: validation and climate assessment. J Geophys Res Ocean 106:2313–2329. https://doi.org/10.1029/2001JC000301

    Article  Google Scholar 

  20. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  21. Dodet G, Bertin X, Taborda R (2010) Wave climate variability in the North-East Atlantic Ocean over the last six decades. Ocean Model 31:120–131. https://doi.org/10.1016/j.ocemod.2009.10.010

    Article  Google Scholar 

  22. Fairall CW, Bradley EF, Hare JE, Grachev AA, Edson JB (2003) Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. J Clim 16:571–591. https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2

    Article  Google Scholar 

  23. Glisan JM, Gutowski WJ, Cassano JJ, Higgins ME (2013) Effects of spectral nudging in WRF on arctic temperature and precipitation simulations. J Clim 26:3985–3999. https://doi.org/10.1175/JCLI-D-12-00318.1

    Article  Google Scholar 

  24. Gulev SK, Grigorieva V (2004) Last century changes in ocean wind wave height from global visual wave data. Geophys Res Lett 31. https://doi.org/10.1029/2004GL021040

  25. Gulev SK, Grigorieva V (2006) Variability of the winter wind waves and swell in the North Atlantic and North Pacific as revealed by the voluntary observing ship data. J Clim 19:5667–5685. https://doi.org/10.1175/JCLI3936.1

    Article  Google Scholar 

  26. Gulev SK, Grigorieva V, Sterl A, Woolf D (2003) Assessment of the reliability of wave observations from voluntary observing ships: insights from the validation of a global wind wave climatology based on voluntary observing ship data. J Geophys Res 108. https://doi.org/10.1029/2002JC001437

  27. Guo L, Sheng J (2015) Statistical estimation of extreme ocean waves over the eastern Canadian shelf from 30-year numerical wave simulation. Ocean Dyn 65:1489–1507. https://doi.org/10.1007/s10236-015-0878-y

    Article  Google Scholar 

  28. Hasselmann S, Hasselmann K (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A New Method for Efficient Computations of the Exact Nonlinear Transfer Integral. J Phys Oceanogr 15:1369–1377. https://doi.org/10.1175/1520-0485(1985)015<1369:CAPOTN>2.0.CO;2

    Article  Google Scholar 

  29. Hodges KI, Lee RW, Bengtsson L (2011) A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J Clim. https://doi.org/10.1175/2011JCLI4097.1

    Article  Google Scholar 

  30. Holthuijsen LH, Tolman HL (1991) Effects of the Gulf Stream on ocean waves. J Geophys Res Ocean 96:12755–12771. https://doi.org/10.1029/91JC00901

    Article  Google Scholar 

  31. Hong S, Lim J (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  32. Hong S-Y, Dudhia J, Chen S-H (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2

    Article  Google Scholar 

  33. Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. https://doi.org/10.1175/MWR3199.1

    Article  Google Scholar 

  34. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res Atmos 113. https://doi.org/10.1029/2008JD009944

  35. Kain JS (2004) The Kain–Fritsch Convective Parameterization: An Update. J Appl Meteorol. https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

  36. Kain JS, Fritsch JM (1990) A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterization. J Atmos Sci. https://doi.org/10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2

  37. Jung T, Gulev SK, Rudeva I, Soloviov V (2006) Sensitivity of extratropical cyclone characteristics to horizontal resolution in the ECMWF model. Q J R Meteorol Soc. https://doi.org/10.1256/qj.05.212

    Article  Google Scholar 

  38. Kudryavtsev VN, Grodsky SA, Dulov VA, Bol’shakov AN (1995) Observations of wind waves in the Gulf Stream frontal zone. J Geophys Res 100:20715–20727

    Article  Google Scholar 

  39. Leckler F, Ardhuin F, Filipot JF, Mironov A (2013) Dissipation source terms and whitecap statistics. Ocean Model 70:62–74. https://doi.org/10.1016/j.ocemod.2013.03.007

    Article  Google Scholar 

  40. Liu P, Tsimpidi AP, Hu Y, Stone B, Russell AG, Nenes A (2012) Differences between downscaling with spectral and grid nudging using WRF. Atmos Chem Phys 12:3601–3610. https://doi.org/10.5194/acp-12-3601-2012

    Article  Google Scholar 

  41. Mass CF, Ovens D, Westrick K, Colle BA (2002) Does increasing horizontal resolution produce more skillful forecasts? The results of two years of real-time numerical weather prediction over the Pacific Northwest. Bull Am Meteorol Soc 83:407–430. https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2

    Article  Google Scholar 

  42. Mentaschi L, Besio G, Cassola F, Mazzino A (2015) Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean Model 90:82–94. https://doi.org/10.1016/j.ocemod.2015.04.003

    Article  Google Scholar 

  43. Miguez-Macho G, Stenchikov GL, Robock A (2004) Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations. J Geophys Res D Atmos. https://doi.org/10.1029/2003JD004495

    Article  Google Scholar 

  44. Oltmanns M, Straneo F, Moore GWK, Mernild SH (2014) Strong downslope wind events in Ammassalik. Southeast Greenland J Clim doi 27:977–993. https://doi.org/10.1175/JCLI-D-13-00067.1

    Article  Google Scholar 

  45. Orlanski I (1975) A rational subdivision of scales for atmospheric processes. Am. Meteorol, Soc

    Google Scholar 

  46. Otte TL, Nolte CG, Otte MJ, Bowden JH (2012) Does nudging squelch the extremes in regional climate modeling? J Clim 25:7046–7066. https://doi.org/10.1175/JCLI-D-12-00048.1

    Article  Google Scholar 

  47. Ponce de León S, Bettencourt JH, Brennan J, Dias F (2015) Evolution of the extreme wave region in the North Atlantic using a 23 year Hindcast. In: Proceedings of the ASME 2015 34th international conference on ocean, offshore and Arctic engineering OMAE2015, may 31–June 5, 2015, St. John’s, Newfoundland, Canada. p 7

  48. Rascle N, Ardhuin F (2013) A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean Model. https://doi.org/10.1016/j.ocemod.2012.12.001

    Article  Google Scholar 

  49. Ricchi A, Miglietta MM, Falco PP, Benetazzo A, Bonaldo D, Bergamasco A, Sclavo M, Carniel S (2016) On the use of a coupled ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea. Atmos Res 172-173:48–65. https://doi.org/10.1016/j.atmosres.2015.12.023

    Article  Google Scholar 

  50. Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. NCAR technical note. NCAR, Boulder, Colorado, pp 1–125

    Google Scholar 

  51. Spindler, DM, Chawla, A, Tolman, HL (2011) An initial look at the CFSR Reanalysis winds for wave modeling. NCEP Technical Note, pp 1–29

  52. Stopa JE, Cheung KF (2014) Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Model 75:65–83. https://doi.org/10.1016/j.ocemod.2013.12.006

    Article  Google Scholar 

  53. Stopa JE, Ardhuin F, Babanin A, Zieger S (2016) Comparison and validation of physical wave parameterizations in spectral wave models. Ocean Model 103:2–17. https://doi.org/10.1016/j.ocemod.2015.09.003

    Article  Google Scholar 

  54. Tang J, Song S, Wu J (2010) Impacts of the spectral nudging technique on simulation of the East Asian summer monsoon. Theor Appl Climatol. https://doi.org/10.1007/s00704-009-0202-1

    Article  Google Scholar 

  55. Tang J, Wang S, Niu X, Hui P, Zong P, Wang X (2017) Impact of spectral nudging on regional climate simulation over CORDEX East Asia using WRF. Clim Dyn 48:2339–2357. https://doi.org/10.1007/s00382-016-3208-2

    Article  Google Scholar 

  56. The WAVEWATCH III Development Group (WW3DG) (2016) User manual and system documentation of WAVEWATCH III R version 5.16. Tech. Note 329, NOAA/NWS/NCEP/MMAB, College Park, MD, USA, pp. 1–326+ Appendices

  57. Tilinina N, Gulev SK, Rudeva I, Koltermann P (2013) Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses. J Clim. https://doi.org/10.1175/JCLI-D-12-00777.1

    Article  Google Scholar 

  58. Tilinina N, Gulev SK, Bromwich DH (2014) New view of Arctic cyclone activity from the Arctic system reanalysis. Geophys Res Lett. https://doi.org/10.1002/2013GL058924

    Article  Google Scholar 

  59. Tolman HL (2014) WAVEWATCH III development best practices. Tech. Note 286, Ver. 1.1, NOAA/NWS/NCEP/MMAB, pp. 1–23

  60. Verezemskaya P, Tilinina N, Gulev S et al (2017) Southern Ocean mesocyclones and polar lows from manually tracked satellite mosaics. Geophys Res Lett. https://doi.org/10.1002/2017GL074053

    Article  Google Scholar 

  61. Young, IR, Zieger, S, Babanin AV (2015) Development and application of a global satellite database of wind and wave conditions. In: proceedings of the ASME 2015 34th international conference on ocean, offshore and Arctic engineering OMAE2015, may 31–June 5, 2015, St. John’s, Newfoundland, Canada. pp 1–10

  62. Young IR, Sanina E, Babanin AV (2017) Calibration and cross validation of a global wind and wave database of altimeter, radiometer, and scatterometer measurements. J Atmos Ocean Technol 34:1285–1306. https://doi.org/10.1175/JTECH-D-16-0145.1

    Article  Google Scholar 

  63. Zappa G, Shaffrey L, Hodges K (2014) Can polar lows be objectively identified and tracked in the ECMWF operational analysis and the ERA-interim reanalysis? Mon Weather Rev 142:2596–2608. https://doi.org/10.1175/MWR-D-14-00064.1

    Article  Google Scholar 

  64. Zieger S, Vinoth J, Young IR (2009) Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. J Atmos Ocean Technol 26:2549–2564. https://doi.org/10.1175/2009JTECHA1303.1

    Article  Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for the helpful comments on the first version of the manuscript. We thank Natalia Tilinina from IO RAS for useful insights. The latest configuration of WAVEWATCH III and WRF models are available by courtesy of NOAA and NCAR. We thank ECMWF for releasing their data to the public and the open-source NCAR graphics.

Funding

This work was supported by the Russian Ministry of Education and Science (agreement 14.616.21.0075, project ID RFMEFI61617X0075).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Margarita Markina.

Additional information

This article is part of the Topical Collection on the 15th International Workshop on Wave Hindcasting and Forecasting in Liverpool, UK, September 10-15, 2017

Responsible Editor: Jenny M Brown

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Markina, M., Gavrikov, A., Gulev, S. et al. Developing configuration of WRF model for long-term high-resolution wind wave hindcast over the North Atlantic with WAVEWATCH III. Ocean Dynamics 68, 1593–1604 (2018). https://doi.org/10.1007/s10236-018-1215-z

Download citation

Keywords

  • Wind wave modeling
  • Wind wave hindcast
  • WAVEWATCH
  • WRF