Skip to main content

Advertisement

Log in

Targeted observation analysis of a Northwestern Tropical Pacific Ocean mooring array using an ensemble-based method

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

An important supplement for ocean observing systems, the Northwestern Tropical Pacific Ocean (NWTPO) mooring array including 15 moorings equipped with Acoustic Doppler Current Profilers (ADCP) devices was developed by the Chinese Academy of Sciences and deployed in 2013. This study assessed the performance of this mooring array in monitoring the intra-seasonal and low-frequency (above 91 days) variability of oceanic currents by conducting targeted observation analyses using an ensemble-based method. Key regions for monitoring intra-seasonal variability of the NWTPO circulation are the equator, Indonesian throughflow (ITF), headstream of the North Equatorial Countercurrent (NECC), and Subtropical Countercurrent (STCC). For monitoring intra-seasonal variability, the range of each mooring is confined to a local scale. Therefore, NWTPO moorings cannot adequately resolve intra-seasonal variability in areas of the ITF, the headstream of the NECC, and STCC due to location constraints of the moorings. For monitoring low-frequency variability of NWTPO circulation, the key regions are the Western Boundary Current (WBC), NECC, and the Equatorial Undercurrent (EUC). NWTPO moorings performed relatively well in monitoring the low-frequency variability, as indicated by the strong background correlations between each of the currents. The NWTPO mooring array plays an important role in monitoring the location and intensity of background currents. Because moorings are costly and require a high-density distribution for optimal performance, understanding the multi-timescale dynamical nature of the NWTPO current system is critical for the deploying future moorings in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ancell B, Hakim GJ (2007) Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon Weather Rev 135(12):4117–4134

    Article  Google Scholar 

  • Berliner LM, Lu ZQ, Snyder C (1999) Statistical design for adaptive weather observations. J Atmos Sci 56(15):2536–2552

    Article  Google Scholar 

  • Bishop CH, Toth Z (1999) Ensemble transformation and adaptive observations. J Atmos Sci 56(11):1748–1765

    Article  Google Scholar 

  • Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform Kalman filter. Part I:theoretical aspects. Mon Weather Rev 129(3):420–436

    Article  Google Scholar 

  • Deng Z, Tang Y, Zhou X (2009) The retrospective prediction of El Niño-southern oscillation from 1881 to 2000 by a hybrid coupled model: (I) sea surface temperature assimilation with ensemble Kalman filter. Clim Dyn 32(2–3):397–413

    Article  Google Scholar 

  • Deng Z, Tang Y, Wang G (2010) Assimilation of Argo temperature and salinity profiles using a bias-aware localized EnKF system for the Pacific Ocean. Ocean Model 35(3):187–205

    Article  Google Scholar 

  • Desroziers G, Berre L, Chapnik B, Poli P (2005) Diagnosis of observation, background and analysis error statistics in observation space. Quart J Roy Meteorol Soc 131(613):3385–3396

    Article  Google Scholar 

  • Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367

    Article  Google Scholar 

  • Fine RA, Lukas R, Bingham FM, Warner MJ, Gammon RH (1994) The western equatorial Pacific: a water mass crossroads. J Geophys Res 99(C12):25063–25080

    Article  Google Scholar 

  • Gordon AL (1986) Interocean exchange of thermocline water. J Geophys Res 91(C4):5037–5046

    Article  Google Scholar 

  • Gordon AL, Sprintallb J, Aken HMV, Susanto D, Wijffels S, Molcarde R, Ffieldf A, Pranowog W, Wirasantosag S (2010) The Indonesian Throughflow during 2004–2006 as observed by the INSTANT program. Dyn Atmos Oceans 50(2):115–128

    Article  Google Scholar 

  • Goswami BN, Ajaya Mohan RS (2001) Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J Clim 14(4):1180–1198

    Article  Google Scholar 

  • Heron SF, Metzger EJ, Skirving WJ (2006) Seasonal variations of the ocean surface circulation in the vicinity of Palau. J Oceanogr 62(4):413–426. https://doi.org/10.1007/s10872-006-0065-3

    Article  Google Scholar 

  • Hu D, Wu l CW, Gupta AS, Ganachaud A, Qiu B, Gordon AL, Lin X, Chen Z, Hu S, Wang G, Wang Q, Sprintall J, Qu T, Kashino Y, Wang F, Kessler WS (2015) Pacific western boundary currents and their roles in climate. Nature 522(7556):299–308

    Article  Google Scholar 

  • Kashino Y, Ishida A, Hosoda S (2009) Observed ocean variability in the Mindanao dome region [J]. J Phys Oceanogr 41(2):287–302

    Article  Google Scholar 

  • Kashino Y, Atmadipoera A, Kuroda Y, Lukijanto (2013) Observed features of the Halmahera and Mindanao eddies. J Geophys Res 118(12):6543–6560

    Article  Google Scholar 

  • Kessler WS (1990) Observations of long Rossby waves in the northern tropical Pacific. J Geophys Res 95(C4):5183–5217

    Article  Google Scholar 

  • Kessler WS, Mcphaden MJ, Weickmann KM (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100(C6):10613–10631

    Article  Google Scholar 

  • Kim YY, Qu T, Jensen T, Miyama T, Mitsudera H, Kang HW, Ishida A (2004) Seasonal and interannual variations of the North Equatorial Current bifurcation in a high-resolution OGCM. J Geophys Res 109(C3):325–347

    Article  Google Scholar 

  • Legates DR, Willmott CJ (1990) Mean seasonal and spatial variability in gauge corrected, global precipitation[J]. Int J Climatol 10(2):111–127

    Article  Google Scholar 

  • Li Y, Peng S, Liu D (2014) Adaptive observation in the South China Sea using CNOP approach based on a 3-D ocean circulation model and its adjoint model. J Geophys Res Oceans 119(12):8973–8986

    Article  Google Scholar 

  • Liu D, Shi P, Shu Y, Yao J, Wang D, Sun L (2016) Assimilating temperature and salinity profiles using ensemble Kalman filter with an adaptive observation error and T-S, constraint. Acta Oceanol Sin 35(1):30–37

    Article  Google Scholar 

  • Majumdar SJ (2016) A review of targeted observations. Bull Am Meteorol Soc 97(12):2287–2303

    Article  Google Scholar 

  • Masumoto Y, Yamagata T (1991) Response of the western tropical Pacific to the Asian winter monsoon: the generation of the Mindanao Dome. J Phys Oceanogr 21(9):1386–1398

    Article  Google Scholar 

  • Mu M, Zhou F, Wang H (2009) A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation. Mon Weather Rev 137(5):1623–1639

    Article  Google Scholar 

  • Oke PR, Schiller AA (2007) Model-based assessment and design of a tropical Indian Ocean mooring array [J]. J Clim 20(13):3269–3283

    Article  Google Scholar 

  • Parent L, Testut CE, Brankart JM, Verron J, Brasseur P, Gourdeau L (2003) Comparative assimilation of topex/poseidon and ers altimeter data and of tao temperature data in the tropical pacific ocean during 1994–1998, and the mean sea-surface height issue. J Mar Syst 40(4):381–401

    Article  Google Scholar 

  • Qiu B (1999) Seasonal eddy field modulation of the North Pacific subtropical countercurrent: TOPEX/Poseidon observations and theory. J Phys Oceanogr 29(10):2471–2486

    Article  Google Scholar 

  • Qiu B, Joyce TM (1992) Interannual variability in the mid- and low-latitude western North Pacific. J Phys Oceanogr 22(9):1062–1079

    Article  Google Scholar 

  • Qiu B, Lukas R (1996) Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current and the Kuroshio along the Pacific western boundary. J Geophys Res 101(C5):12315–12330

    Article  Google Scholar 

  • Qiu B, Chen S, Klein P, Sasaki H, Sasai Y (2014) Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J Phys Oceanogr 44(12):3079–3098

    Article  Google Scholar 

  • Qiu B, Rudnick DL, Cerovecki I, Cornuelle BD, Chen S, Schönau MC, McClean JL, Copalakrishnan G (2015) The Pacific North Equatorial Current: new insights from the origins of the Kuroshio and Mindanao Currents (OKMC) project. Oceanogr 28(4):24–33

    Article  Google Scholar 

  • Qu T, Lukas R (2003) The bifurcation of the North Equatorial Current in the Pacific. J Phys Oceanogr 33(1):5–18

    Article  Google Scholar 

  • Sakov P, Oke PR (2008) Objective array design: application to the tropical indian ocean. J Atmos Ocean Technol 25(5):794–807

    Article  Google Scholar 

  • Schiller A, Wijffels SE, Sprintall J, Molcard R, Oke PR (2010) Pathways of intraseasonal variability in the Indonesian Throughflow region [J]. Dyn Atmos Oceans 50(2):174–200

    Article  Google Scholar 

  • Shao C, Xuan L, Cao Y, Cui X, Gao S (2015) Impact of Argo observation on the regional ocean reanalysis of China coastal waters and adjacent seas: a twin-experiment study. Adv Meteorol 2015:10): 1–10):15

    Google Scholar 

  • Tang Y, Kleeman R, Moore AM (2004) SST assimilation experiments in a tropical Pacific Ocean model. J Phys Oceanogr 34(34):623–642

    Article  Google Scholar 

  • Teague WJ, Carron MJ, Hogan PJ (1990) A comparison between the generalized digital environmental model and Levitus climatologies. J Geophys Res 95(C5):7167–7183

    Article  Google Scholar 

  • Tozuka T, Kagimoto T, Masumoto Y, Yamagata T (2002) Simulated multiscale variations in the western tropical Pacific: the Mindanao Dome revisited. J Phys Oceanogr 32(5):1338–1359

    Article  Google Scholar 

  • Wang F, Li Y, Wang J (2016a) Intraseasonal variability of the surface zonal currents in the western tropical Pacific Ocean: characteristics and mechanisms [J]. J Phys Oceanogr 46(12):3639–3660

    Article  Google Scholar 

  • Wang F, Wang J, Guan C, Ma Q, Zhang D (2016b) Mooring observation of equatorial currents over upper 1000 m depth in the western Pacific Ocean in 2014[J]. J Geophys Res Oceans 121(6):3730–3740

    Article  Google Scholar 

  • Webster PJ, Lukas R (1992) The tropical ocean/global: atmosphere Coupled Ocean-Atmosphere Response Experiments (COARE). Bull Am Meteorol Soc 73(9):1377–1416

    Article  Google Scholar 

  • Xie J, Zhu J (2010) Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Model 33(3–4):283–298

    Article  Google Scholar 

  • Yan C, Zhu J, Zhou G (2007) Impacts of XBT, TAO, altimetry and ARGO observations on the tropical Pacific Ocean data assimilation [J]. Adv Atmos Sci 24(3):383–398

    Article  Google Scholar 

  • Yan C, Zhu J, Tanajura CAS (2015a) Impacts of mean dynamic topography on a regional ocean assimilation system. Ocean Sci 11(5):829–837

    Article  Google Scholar 

  • Yan C, Zhu J, Xie J (2015b) An ocean data assimilation system in the Indian Ocean and West Pacific Ocean. Adv Atmos Sci 32(11):1460–1472

    Article  Google Scholar 

  • Yu Z, McCreary JP, Kessler WS, Kelly KA (2000) Influence of equatorial dynamics on the Pacific north equatorial countercurrent. J Phys Oceanogr 30(12):3179–3190

    Article  Google Scholar 

  • Zhang C (2005) Madden-Julian oscillation. Rev Geophys 43(2):2528

    Article  Google Scholar 

  • Zhang Y, Xie Y, Wang H, Chen D, Toth Z (2016) Ensemble transform sensitivity method for adaptive observations. Adv Atmos Sci 33(1):10–20

    Article  Google Scholar 

  • Zhang X, Sun C, Liu C, Zhang L, Shao C, Zhang X, Zhao Y (2017) Evaluation of the impact of Argo data on ocean reanalysis in the pacific region. Adv Meteorol (c01015):1–12

  • Zhao J, Li Y, Wang F (2013a) The role of mindanao dome in the variability of the Pacific North equatorial current bifurcation [J]. J Oceanogr 69(3):313–327

    Article  Google Scholar 

  • Zhao J, Li Y, Wang F (2013b) Dynamical responses of the West Pacific North Equatorial Countercurrent (NECC) system to El Niño events [J]. J Geophys Res Oceans 118(6):2828–2844

    Article  Google Scholar 

  • Zheng F, Zhu J, Zhang RH, Zhou GQ (2006) Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model [J]. Geophys Res Lett 33(19):318–372

    Article  Google Scholar 

  • Zhou L, Murtugudde R (2010) Influences of Madden–Julian Oscillations on the eastern Indian Ocean and the maritime continent [J]. Dyn Atmos Oceans 50(2):257–274

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2016YFC1401702 and 2016YFC1401705), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA10010405), and the National Natural Science Foundation of China (No. 41521005 and 41506022), and was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1 (A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeqiang Shu.

Additional information

Responsible Editor: Guoping Gao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhu, J., Shu, Y. et al. Targeted observation analysis of a Northwestern Tropical Pacific Ocean mooring array using an ensemble-based method. Ocean Dynamics 68, 1109–1119 (2018). https://doi.org/10.1007/s10236-018-1188-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-018-1188-y

Keywords

Navigation