Decadal evolution of tidal flats and channels in the Outer Weser estuary, Germany

Abstract

This study focuses on the medium scale morphodynamics of the tidal flat and channel system Fedderwarder Priel, located in the Outer Weser estuary (Wadden Sea, Germany). Tidal channels and adjacent flats are highly dynamic systems whose morphologic evolution are driven by tidal, wind, and wave forcings. These coastal environments are an important ecosystem and react to changes in hydrodynamic conditions in various spatial and temporal scales. Based on annual medium-resolution digital elevation models from 1998 to 2016, we describe changes in the surface area over depth with hypsometries and use vertical dynamic trends in order to analyze and visualize the morphologic evolution of the Fedderwarder Priel and adjacent tidal channels. It is shown that several intertidal flats rise in the order of 1.3 to 5.6 cm/year. The findings indicate that the Outer Weser estuary was not in an equilibrium state for the investigated period, and tidal flats accreted with a rate exceeding mean sea level rise.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arns A, Wahl T, Haigh ID, Jensen J, Pattiaratchi C (2013) Estimating extreme water level probabilities: a comparison of the direct methods and recommendations for best practise. Coast Eng 81:51–66. https://doi.org/10.1016/j.coastaleng.2013.07.003

    Article  Google Scholar 

  2. Arns A, Dangendorf S, Jensen J, Talke S, Bender J, Pattiaratchi C (2017) Sea-level rise induced amplification of coastal protection design heights. Sci Rep 7:40171. https://doi.org/10.1038/srep40171

    Article  Google Scholar 

  3. Boon JD, Byrne RJ (1981) On basin hypsometry and the morphodynamic response of coastal inlet systems. Mar Geol 40:27–48

    Article  Google Scholar 

  4. Chu K, Winter C, Hebbeln D, Schulz M (2013) Improvement of morphodynamic modeling of tidal channel migration by nudging. Coast Eng 77:1–13. https://doi.org/10.1016/j.coastaleng.2013.02.004

    Article  Google Scholar 

  5. de Vet PLM, van Prooijen BC, Wang ZB (2017) The differences in morphological development between the intertidal flats of the Eastern and Western Scheldt. Geomorphology 281:31–42. https://doi.org/10.1016/j.geomorph.2016.12.031

  6. Dieckmann R, Osterthun M, Partenscky HW (1987) Influence of water-level elevation and tidal range on the sedimentation in a German tidal flat area. Prog Oceanogr 18:151–166. https://doi.org/10.1016/0079-6611(87)90031-0

    Article  Google Scholar 

  7. Dissanayake DMPK (2011) Modelling morphological response of large tidal inlet systems to sea level rise: UNESCO-IHE PhD thesis. CRC Press

  8. Dronkers J (1986) Tidal asymmetry and estuarine morphology. Netherlands J Sea Res 20:117–131

    Article  Google Scholar 

  9. Eisma D (1998) Intertidal deposits: river mouth, tidal flats, and coastal lagoons. CRC Press, Bocoa Raton, Fla

    Google Scholar 

  10. Elias EPL, Van Der Spek AJF, Wang ZB, De Ronde J (2012) Morphodynamic development and sediment budget of the Dutch Wadden Sea over the last century. Geol en Mijnbouw/Netherlands J Geosci 91:293–310. https://doi.org/10.1017/S0016774600000457

    Article  Google Scholar 

  11. FitzGerald DM, Fenster MS, Argow BA, Buynevich IV (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647. https://doi.org/10.1146/annurev.earth.35.031306.140139

    Article  Google Scholar 

  12. Friedrichs CT (2011) Tidal flat morphodynamics: a synthesis. In: Treatise on estuarine and coastal science. Elsevier Inc., pp 137–170

  13. Friedrichs CT, Aubrey DG (1996) Uniform bottom shear stress and equilibrium hypsometry of intertidal flats. Coast Estuar Stud 50:405–429. https://doi.org/10.1029/CE050p0405

    Article  Google Scholar 

  14. Herrling G, Winter C (2014) Morphological and sedimentological response of a mixed-energy barrier island tidal inlet to storm and fair-weather conditions. Earth Surf Dyn 2:363–382. https://doi.org/10.5194/esurf-2-363-2014

    Article  Google Scholar 

  15. Herrling G, Winter C (2017) Spatiotemporal variability of sedimentology and morphology in the East Frisian barrier island system. Geo-Marine Lett 37:137–149. https://doi.org/10.1007/s00367-016-0462-6

    Article  Google Scholar 

  16. Hibma A, Stive MJF, Wang ZB (2004) Estuarine morphodynamics. Coast Eng 51:765–778. https://doi.org/10.1016/j.coastaleng.2004.07.008

    Article  Google Scholar 

  17. Hofstede JLA (2002) Morphologic responses of Wadden Sea tidal basins to a rise in tidal water levels and tidal range. Z Geomorph NF 46:93–108

    Article  Google Scholar 

  18. Hofstede JLA, Becherer J, Burchard H (2016) Are Wadden Sea tidal systems with a higher tidal range more resilient against sea level rise? J Coast Conserv 22:71–78. https://doi.org/10.1007/s11852-016-0469-1

    Article  Google Scholar 

  19. Hunt S, Bryan KR, Mullarney JC (2015) The influence of wind and waves on the existence of stable intertidal morphology in meso-tidal estuaries. Geomorphology 228:158–174. https://doi.org/10.1016/j.geomorph.2014.09.001

    Article  Google Scholar 

  20. Kösters F, Winter C (2014) Exploring German Bight coastal morphodynamics based on modelled bed shear stress. Geo-Marine Lett 34:21–36. https://doi.org/10.1007/s00367-013-0346-y

    Article  Google Scholar 

  21. Le Hir P, Roberts W, Cazaillet O et al (2000) Characterization of intertidal flat hydrodynamics. Cont Shelf Res 20:1433–1459

    Article  Google Scholar 

  22. Lotze HK, Reise K, Worm B, van Beusekom J, Busch M, Ehlers A, Heinrich D, Hoffmann RC, Holm P, Jensen C, Knottnerus OS, Langhanki N, Prummel W, Vollmer M, Wolff WJ (2005) Human transformations of the Wadden Sea ecosystem through time: a synthesis. Helgol Mar Res 59:84–95. https://doi.org/10.1007/s10152-004-0209-z

    Article  Google Scholar 

  23. Milbradt P, Valerius J, Zeiler M (2015) Das Funktionale Bodenmodell: Aufbereitung einer konsistenten Datenbasis für die Morphologie und Sedimentologie. Die Küste, Arch Res Technol North Sea Balt Coast 83:19–38

    Google Scholar 

  24. Papula L (2008) Mathematik für Ingenieure und Naturwissenschaftler, Band 3. Vieweg + Teubner Verlag

  25. Pye K, Blott SJ (2014) The geomorphology of UK estuaries: the role of geological controls, antecedent conditions and human activities. Estuar Coast Shelf Sci 150:196–214. https://doi.org/10.1016/j.ecss.2014.05.014

    Article  Google Scholar 

  26. Reise K (2005) Coast of change: habitat loss and transformations in the Wadden Sea. Helgol Mar Res 59:9–21. https://doi.org/10.1007/s10152-004-0202-6

    Article  Google Scholar 

  27. Schückel U, Kröncke I (2013) Temporal changes in intertidal macrofauna communities over eight decades: a result of eutrophication and climate change. Estuar Coast Shelf Sci 117:210–218. https://doi.org/10.1016/j.ecss.2012.11.008

    Article  Google Scholar 

  28. Valerius J, Feldmann J, van Zoest M, et al (2013a) Documentation of morphological products from the AufMod project Functional Seabed Model, data format: Text files (CSV, XYZ). Federal Maritime and Hydrographic Agency (BSH) and smile consult GmbH. Unpublished report

  29. Valerius J, Feldmann J, van Zoest M, et al (2013b) Documentation of sedimentological products from the AufMod project Functional Seabed Model, data format: Text files (CSV, XYZ). Federal Maritime and Hydrographic Agency (BSH) and smile consult GmbH. Unpublished report

  30. Van Dijk T, Kleuskens MHP, Dorst LL, et al (2012) Quantified and applied sea-bed dynamics of the Netherlands Continental Shelf and the Wadden Sea. In: Jubilee conference proceedings, NCK-days 2012: crossing borders in coastal research, Enschede, Nederland, 13–16 maart 2012. pp 223–227

  31. Wahl T, Haigh ID, Woodworth PL, Albrecht F, Dillingh D, Jensen J, Nicholls RJ, Weisse R, Wöppelmann G (2013) Observed mean sea level changes around the North Sea coastline from 1800 to present. Earth-Sci Rev 124:51–67. https://doi.org/10.1016/j.earscirev.2013.05.003

    Article  Google Scholar 

  32. Wang ZB, Hoekstra P, Burchard H, Ridderinkhof H, de Swart HE, Stive MJF (2012) Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast Manag 68:39–57. https://doi.org/10.1016/j.ocecoaman.2011.12.022

    Article  Google Scholar 

  33. Wang ZB, Vroom J, Van Prooijen BC et al (2013) Movement of tidal watersheds in the Wadden Sea and its consequences on the morphological development. Int J Sediment Res 28:162–171. https://doi.org/10.1016/S1001-6279(13)60028-1

    Article  Google Scholar 

  34. Winter C (2011) Macro scale morphodynamics of the German North Sea coast. J Coast Res SI 64:706–710

    Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to the Federal Maritime and Hydrographic Agency for providing the necessary data that formed the basis for elaborating this study. Furthermore, special thanks go to Prof. Peter Milbradt for providing additional data. We thank the two anonymous reviewers for their thorough review and helpful comments.

Funding

This project is funded by the German Research Foundation via the International Research Training Group INTERCOAST.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Markus Benninghoff.

Additional information

This article is part of the Topical Collection on the 8th International conference on Coastal Dynamics, Helsingør, Denmark, 12–16 June 2017

Responsible Editor: Aart Kroon

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benninghoff, M., Winter, C. Decadal evolution of tidal flats and channels in the Outer Weser estuary, Germany. Ocean Dynamics 68, 1181–1190 (2018). https://doi.org/10.1007/s10236-018-1184-2

Download citation

Keywords

  • Tidal flat
  • Hypsometry
  • Morphology
  • Time series
  • Vertical dynamic trend
  • Sediment budget