Ocean Dynamics

, Volume 68, Issue 7, pp 761–777 | Cite as

Eddy properties in the Southern California Current System

  • Fanny ChenillatEmail author
  • Peter J. S. Franks
  • Xavier Capet
  • Pascal Rivière
  • Nicolas Grima
  • Bruno Blanke
  • Vincent Combes


The California Current System (CCS) is an eastern boundary upwelling system characterized by strong eddies that are often generated at the coast. These eddies contribute to intense, long-distance cross-shelf transport of upwelled water with enhanced biological activity. However, the mechanisms of formation of such coastal eddies, and more importantly their capacity to trap and transport tracers, are poorly understood. Their unpredictability and strong dynamics leave us with an incomplete picture of the physical and biological processes at work, their effects on coastal export, lateral water exchange among eddies and their surrounding waters, and how long and how far these eddies remain coherent structures. Focusing our analysis on the southern part of the CCS, we find a predominance of cyclonic eddies, with a 25-km radius and a SSH amplitude of 6 cm. They are formed near shore and travel slightly northwest offshore for ~ 190 days at ~ 2 km day−1. We then study one particular, representative cyclonic eddy using a combined Lagrangian and Eulerian numerical approach to characterize its kinematics. Formed near shore, this eddy trapped a core made up of ~ 67% California Current waters and ~ 33% California Undercurrent waters. This core was surrounded by other waters while the eddy detached from the coast, leaving the oldest waters at the eddy’s core and the younger waters toward the edge. The eddy traveled several months as a coherent structure, with only limited lateral exchange within the eddy.


California upwelling system Mesoscale eddies Eddy dynamics Lagrangian study Numerical study 



This work was supported by the California Current Ecosystem LTER site (NSF Award No. 1026607). FC thanks Mati Kahru (Scripps Institution of Oceanography, UCSD— for providing satellite data. We thank the two anonymous referees for their insightful comment on the manuscript. The altimeter products were produced by Ssalto/Duacs and distributed by Aviso, with support from CNES ( The data used as boundaries and surface forcing for the model study are available from the Comprehensive Ocean-Atmosphere Data Set (COADS) (, Advanced Very High Resolution Radiometer (AVHRR) (, from Quick Scatterometer (QuikScat) (, and Ocean General Circulation Model for the Earth Simulator (OFES) ( All the numerical runs were performed with the Caparmor high-performance computer facilities available at Ifremer. The numerical dataset that supports this article is available upon request to the authors.


  1. Almazán-Becerril A, Rivas D, García-Mendoza E (2012) The influence of mesoscale physical structures in the phytoplankton taxonomic composition of the subsurface chlorophyll maximum off western Baja California. Deep Sea Res Part I Oceanogr Res Pap 70:91–102. CrossRefGoogle Scholar
  2. Barth JA, Cowles TJ, Kosro PM, Shearman RK, Huyer A, Smith RL (2002) Injection of carbon from the shelf to offshore beneath the euphotic zone in the California Current. J Geophys Res 107(C6):3057. CrossRefGoogle Scholar
  3. Batteen ML (1997) Wind-forced modeling studies of currents, meanders, and eddies in the California Current system. J Geophys Res 102(C1):985–1010CrossRefGoogle Scholar
  4. Batteen M, Cipriano N, Monroe J (2003) A large-scale seasonal modeling study of the California Current System. J Oceanogr 59(5):545–562CrossRefGoogle Scholar
  5. Beron-Vera FJ, Olascoaga MJ, Goni GJ (2008) Oceanic mesoscale eddies as revealed by Lagrangian coherent structures. Geophys Res Lett 35(12):L12603. CrossRefGoogle Scholar
  6. Blanke B, Raynaud S (1997) Kinematics of the Pacific equatorial undercurrent: an Eulerian and Lagrangian approach from GCM results. J Phys Oceanogr 27:1038–1053CrossRefGoogle Scholar
  7. Blanke B, Arhan M, Madec G, Roche S (1999) Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model. J Phys Oceanogr 29(11):2753–2768.<2753:WWPITE>2.0.CO;2 CrossRefGoogle Scholar
  8. Bograd SJ, Lynn RJ (2003) Long-term variability in the Southern California Current System. Deep-Sea Res II 50:2355–2370. CrossRefGoogle Scholar
  9. Bograd SJ, Mantyla AW (2005) On the subduction of upwelled waters in the California current. J Mar Syst 63(5):863–885. Google Scholar
  10. Brannigan L, Marshalla DP, Naveira-Garabatob A, Nurserc AJG (2015) The seasonal cycle of submesoscale flows. Ocean Model 92:69–84. CrossRefGoogle Scholar
  11. Caldeira RMA, Marchesiello P, Nezlin NP, DiGiacomo PM, McWilliams JC (2005) Island wakes in the Southern California Bight. J Geophys Res 110(C11):C11012. CrossRefGoogle Scholar
  12. Capet XJ, Carton XJ (2004) Nonlinear regimes of baroclinic boundary currents. J Phys Oceanogr 34:1400–1409CrossRefGoogle Scholar
  13. Capet X, Marchesiello P, McWilliams JC (2004) Upwelling response to coastal wind profiles. Geophys Res Lett 31:L13311. CrossRefGoogle Scholar
  14. Capet X, Campos EJ, Paiva AM (2008a) Submesoscale activity over the Argentinian shelf. Geophys Res Lett 35(15):L15605. CrossRefGoogle Scholar
  15. Capet X, Colas F, Mcwilliams JC, Penven P (2008b) Eddies in eastern boundary subtropical upwelling systems. In: Hecht MW, Hasumi H (eds) Ocean Modeling in an Eddying Regime. AGU, Washington, D. C, pp 131–147. CrossRefGoogle Scholar
  16. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008c) Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests. J Phys Oceanogr 38(1):29–43. CrossRefGoogle Scholar
  17. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008d) Mesoscale to submesoscale transition in the California Current System. Part II: frontal processes. J Phys Oceanogr 38(1):44–64. CrossRefGoogle Scholar
  18. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Weather Rev 136(8):2999–3017. CrossRefGoogle Scholar
  19. Centurioni LR, Ohlmann JC, Niiler PP (2008) Permanent meanders in the California Current System. J Phys Oceanogr 38:1690–1710. CrossRefGoogle Scholar
  20. Chaigneau A, Gizolme A, Grados C (2008) Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Prog Oceanogr 79(2–4):106–119. CrossRefGoogle Scholar
  21. Chaigneau A, Eldin G, Dewitte B (2009) Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007). Prog Oceanogr 83(1–4):117–123. CrossRefGoogle Scholar
  22. Chaigneau A, Le Texier M, Eldin G, Grados C, Pizarro O (2011) Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: a composite analysis from altimetry and Argo profiling floats. J Geophys Res 116(C11):C11025. CrossRefGoogle Scholar
  23. Checkley DM, Barth JA (2009) Patterns and processes in the California Current System. Prog Oceanogr 83:49–64. CrossRefGoogle Scholar
  24. Checkley DM Jr, Dotson RC, Griffith DA (2000) Continuous, underway sampling of eggs of Pacifc sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) in spring 1996 and 1997 off southern and Central California. Deep Sea Res. Part II Top. Stud. Oceanogr. 47:1139–1155CrossRefGoogle Scholar
  25. Chelton DB, Schlax MG, Samelson RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. CrossRefGoogle Scholar
  26. Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91(2):167–216. CrossRefGoogle Scholar
  27. Chenillat F, Franks PJS, Rivière P, Capet X, Grima N, Blanke B (2015) Plankton dynamics in a cyclonic eddy in the Southern California Current System. J. Geophys. Res. Oceans 120:5566–5588. CrossRefGoogle Scholar
  28. Chenillat F, Franks PJS, Combes V (2016) Biogeochemical properties of eddies in the California Current System. Geophys Res Lett 43:5812–5820. CrossRefGoogle Scholar
  29. Colas F, Capet X, McWilliams JC, Li Z (2013) Mesoscale eddy buoyancy flux and eddy-induced circulation in eastern boundary currents. J Phys Oceanog 43:1073–1095CrossRefGoogle Scholar
  30. Combes V, Chenillat F, Di Lorenzo E, Rivière P, Ohman MD, Bograd SJ (2013) Cross-shore transport variability in the California Current: Ekman upwelling vs. eddy dynamics. Prog Oceanogr 109:78–89. CrossRefGoogle Scholar
  31. Cushman-Roisin B (1994) Introduction to geophysical fluid dynamics. Prentice Hall, Englewood Cliffs, 320 ppGoogle Scholar
  32. d’Ovidio F, Fernández V, Hernández-García E, López C (2004) Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys Res Lett 31(17):L17203. Google Scholar
  33. d’Ovidio F, De Monte S, Della Penna A, Cotté C, Guinet C (2013) Ecological implications of eddy retention in the open ocean: a Lagrangian approach. J Phys A Math Theor 46(25):254023. CrossRefGoogle Scholar
  34. Doglioli AM, Blanke B, Speich S, Lapeyre G (2007) Tracking coherent structures in a regional ocean model with wavelet analysis: application to Cape Basin eddies. J Geophys Res 112(C5):C05043. CrossRefGoogle Scholar
  35. Dong C, Idica EY, McWilliams JC (2009) Circulation and multiple-scale variability in the Southern California Bight. Prog Oceanogr 82(3):168–190. CrossRefGoogle Scholar
  36. Emery WJ (2001) Water types and water masses. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of Ocean Sciences, vol 4. Academic, San Diego, pp 3179–3187CrossRefGoogle Scholar
  37. Emery WJ, Meincke J (1986) Global water masses: summary and review. Oceanol Acta 9(4):383–391Google Scholar
  38. FAO (Food and Agriculture Organization of the United Nations) (2009) The State of the World Fisheries and Aquaculture 2008 (SOFIA), Rome, Italy. ISBN 978–92–5-106029-2Google Scholar
  39. Flierl GR (1981) Particle motions in large-amplitude wave fields. Geophys Astropysical Fluid Dyn 18(1–2):39–74. CrossRefGoogle Scholar
  40. Fox-Kemper B, Ferrari R, Hallberg R (2008) Parameterization of mixed layer eddies. Part I: theory and diagnosis. J Phys Oceanogr 38(6):1145–1165. CrossRefGoogle Scholar
  41. Frenger I, Gruber N, Knutti R, Münnich M (2013) Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat Geosci 6(8):608–612. CrossRefGoogle Scholar
  42. Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Münnich M, McWilliams JC, Nagai T, Plattner G-K (2011) Eddy-induced reduction of biological production in eastern boundary upwelling systems. Nat Geosci 4(11):787–792. CrossRefGoogle Scholar
  43. Hayward TL, Venrick EL (1998) Nearsurface pattern in the California Current: coupling between physical and biological structure. Deep Sea Res Part II Top Stud Oceanogr 45:634–658CrossRefGoogle Scholar
  44. Hickey BM (1979) The California current system—hypotheses and facts. Prog Oceanogr 8:191–279CrossRefGoogle Scholar
  45. Hickey BM (1998) Coastal oceanography of western North America from the tip of Baja California to Vancouver Island. In: Robinson AR, Brink KH (eds) The Sea, Volume 11: The Global Coastal Ocean: Regional Studies and Syntheses. Wiley, New York, pp 345–393Google Scholar
  46. Hickey BM, Dobbins EL, Allen SE (2003) Local and remote forcing of currents and temperature in the central Southern California Bight. J Geophys Res 108(C3):3081. CrossRefGoogle Scholar
  47. Isern-Fontanet J, García-Ladona E, Font J (2003) Identification of marine eddies from altimetric maps. J Atmos Ocean Technol 20(5):772–778CrossRefGoogle Scholar
  48. Kahru M, Kudela RM, Manzano-Sarabia M, Mitchell BG (2012) Trends in the surface chlorophyll of the California Current: merging data from multiple ocean color satellites. Deep Sea Res. Part II Top. Stud. Oceanogr. 77-80:89–98. CrossRefGoogle Scholar
  49. Kelly K, Beardsley R, Limeburner R, Brink K, Paduan J, Chereskin T (1998) Variability of the near-surface eddy kinetic energy in the California Current based on altimetric, drifter, and moored current data. J Geophys Res 103(C6):13,067–13,083CrossRefGoogle Scholar
  50. Kim H, Miller AJ, Neilson DJ, Mc Gowan JA (2005) Decadal variations of mixed layer depth and biological response. In: Sixth conference on coastal atmospheric and oceanic prediction and processes, 85th american meteorological society annual meeting, 9—13 January 2005, San Diego, CA (USA), pp 15–17Google Scholar
  51. Kurian J, Colas F, Capet X, McWilliams JC, Chelton DB (2011) Eddy properties in the California current system. J Geophys Res 116(C8):C08027. CrossRefGoogle Scholar
  52. Lehahn Y, d’Ovidio F, Lévy M, Heifetz E (2007) Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J Geophys Res 112(C8):C08005. CrossRefGoogle Scholar
  53. Logerwell EA, Lavaniegos B, Smith PE (2001) Spatially-explicit bioenergetics of Pacific sardine in the Southern California Bight: are mesoscale eddies areas of exceptional prerecruit production? Prog Oceanogr 49(1–4):391–406. CrossRefGoogle Scholar
  54. Marchesiello P, McWilliams JC, Shchepetkin AF (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3(1–2):1–20. CrossRefGoogle Scholar
  55. Marchesiello P, McWilliams JC, Shchepetkin AF (2003) Equilibrium structure and dynamics of the California current system. J Phys Oceanogr 33:753–783CrossRefGoogle Scholar
  56. McClatchie S (2014) Regional fisheries oceanography of the California current system: the CalCOFI program. Springer, 235pp. ISBN 978–94–007-7222-9.
  57. McWilliams JC, Flierl GR (1979) On the evolution of isolated nonlinear vortices. J Phys Oceanogr 9:1155–1182CrossRefGoogle Scholar
  58. Messié M, Chavez FP (2015) Seasonal regulation of primary production in eastern boundary upwelling systems. Prog Oceanogr 134:1–18. CrossRefGoogle Scholar
  59. Moore TS, Matear RJ, Marra J, Clementson L (2007) Phytoplankton variability off the Western Australian Coast: mesoscale eddies and their role in cross-shelf exchange. Deep-Sea Res II Top Stud Oceanogr 54(8–10):943–960. CrossRefGoogle Scholar
  60. Morrow R, Birol F, Griffin D, Sudre J (2004) Divergent pathways of cyclonic and anti-cyclonic ocean eddies. Geophys Res Lett 31(24):L24311. CrossRefGoogle Scholar
  61. Nakamura N (1996) Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J Atmos Sci 53:1524–1537CrossRefGoogle Scholar
  62. Nencioli F, d’Ovidio F, Doglioli AM, Petrenko AA (2011) Surface coastal circulation patterns by in-situ detection of Lagrangian coherent structures. Geophys Res Lett 38(17):L17604. CrossRefGoogle Scholar
  63. Okubo A (1970) Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep Sea Res Oceanogr Abstr 17:445–454CrossRefGoogle Scholar
  64. Owen RWJ (1980) Eddies of the California current system: physical and ecological characteristics. In: Power MD (ed) 2nd California Islands Multidisciplanary Symposium. Santa Barbara Museum of Natural History, Santa Barbara, pp 237–263Google Scholar
  65. Pares-Sierra A, White WB, Tai C-K (1993) Wind-driven coastal generation of annual mesoscale eddy activity in the California current. J Phys Oceanogr 23(6):1110–1121.<1110:WDCGOA>2.0.CO;2 CrossRefGoogle Scholar
  66. Pegliasco C, Chaigneau A, Morrow R (2015) Main eddy vertical structures observed in the four major eastern boundary upwelling systems. J Geophys Res Oceans 120:6008–6033. CrossRefGoogle Scholar
  67. Penven P, Marchesiello P, Debreu L, Lefèvre J (2008) Software tools for pre- and post-processing of oceanic regional simulations. Environ Model Softw 23(5):660–662. CrossRefGoogle Scholar
  68. Samelson RM, Schlax MG, Chelton DB (2014) Randomness, symmetry, and scaling of mesoscale eddy life cycles. J Phys Oceanogr 44:1012–1029. CrossRefGoogle Scholar
  69. Sangrà P, Pelegrí JL, Hernández-Guerra A, Igor A, Martín JM, Marrero-Díaz A, Martínez A, Ratsimandresy AW, Rodríguez-Santana A (2005) Life history of an anticyclonic eddy. J Geophys Res 110(C3):C03021. CrossRefGoogle Scholar
  70. Sangrà P, Pascual A, Rodríguez-Santana Á, Machín F, Mason E, McWilliams JC, Pelegrí JL, Dong C, Rubio A, Arístegui J, Marrero-Díaz Á, Hernández-Guerra A, Martínez-Marrero A, Auladell M (2009) The canary eddy corridor: a major pathway for long-lived eddies in the subtropical North Atlantic. Deep Sea Res. Part I Oceanogr Res Pap 56(12):2100–2114. CrossRefGoogle Scholar
  71. Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D Nonlinear Phenom 212(3–4):271–304. CrossRefGoogle Scholar
  72. Shchepetkin AF, McWilliams JC (1998) Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Mon Weather Rev 126:1541–1580CrossRefGoogle Scholar
  73. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9(4):347–404. CrossRefGoogle Scholar
  74. Simpson JJ, Dickey TD, Koblinsky CJ (1984), An offshore eddy in the California Current System Part I: Interior dynamics, Prog Oceanogr 13:5–49Google Scholar
  75. Sprintall J, Cronin MF (2001) Upper ocean vertical structure. In: Steele JH, Thorpe SA, Turekian KK (eds) Encyclopedia of ocean sciences. Academic, San Diego, pp 3120–3129CrossRefGoogle Scholar
  76. Stegmann PM, Schwing F (2007) Demographics of mesoscale eddies in the California Current. Geophys Res Lett 34(14):L14602. CrossRefGoogle Scholar
  77. Stramma L, Bange HW, Czeschel R, Lorenzo A, Frank M (2013) On the role of mesoscale eddies for the biological productivity and biogeochemistry in the eastern tropical Pacific Ocean off Peru. Biogeosciences 10:7293–7306. CrossRefGoogle Scholar
  78. Strub PT, James C (2000) Altimeter-derived variability of surface velocities in the California Current System: 2. Seasonal circulation and eddy statistics. Deep Sea Res. Part II Top. Stud. Oceanogr. 47(5–6):831–870. CrossRefGoogle Scholar
  79. U.S. GLOBEC (1992) In: Mackas D, Strub T, Hunter J (eds) Eastern boundary current program: report on climate change and the California current ecosystem. U.S. Global Ocean Ecosystems Dynamics Report Number 7. University of California, Davis 99pp Google Scholar
  80. Weiss J (1991) The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48(2–3):273–294CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Integrative Oceanography Division, Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  2. 2.Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 CNRS-Ifremer-IRD-UBOInstitut Universitaire Européen de la Mer (IUEM)PlouzanéFrance
  3. 3.Laboratoire d’Océanographie et du Climat (LOCEAN), CNRS-UPMC-IRD-MNHNInstitut Pierre Simon Laplace (IPSL)ParisFrance
  4. 4.Laboratoire d’Océanographie Physique et Spatiale (LOPS), UMR 6523 CNRS-Ifremer-IRD-UBOIUEMPlouzanéFrance
  5. 5.College of Earth, Ocean and Atmospheric SciencesOregon State UniversityCorvallisUSA

Personalised recommendations