Skip to main content

Advertisement

Log in

On the interaction between ocean surface waves and seamounts

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can interact with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy seas are able to affect the water column up to a considerable depth and therefore interact with these deep-sea features. We quantify this interaction through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong interaction that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the interaction of more realistic sea conditions with a very shallow rock in the Yellow Sea. Potentially important for navigation and erosion processes, mutatis mutandis, these results are also indicative of possible interactions with emerged islands and sand banks in shelf seas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Babanin AV, Hsu T-W, Roland A, Ou S-H, Doong D-J, Kao CC (2011) Spectral wave modelling of Typhoon Krosa. Nat Hazards Earth Syst Sci 11:501–511

    Article  Google Scholar 

  • Babanin A, Young I, Mirfenderesk H (2005) Field and laboratory measurements of wave-bottom interaction. Conference Proceedings Coasts and Ports 2005, Australia: 293-298. ISBN: 0646451308

  • Benetazzo A, Fedele F, Gallego G, Shih PC, Yezzi A (2012) Offshore stereo measurements of gravity waves. Coast Eng 64:127–138

    Article  Google Scholar 

  • Booij N, Holthuijsen LH, Ris RC (1996) The SWAN wave model for shallow water. Proc. 25th Int. Conf. Coastal Engng., Orlando, USA, vol 1, pp 668–676

  • Cavaleri L, Alves J, Ardhuin F, Babanin A, Banner M, Belibassakis K, Benoit M, Donelan M, Groenweg J, Herbers T, Hwang P, Janssen P, Janssen T, Lavrenov I, Magne R, Monbaliu J, Onorato M, Polnikov V, Resio D, Rogers W, Sheremet A, McKee Smith J, Tolman H, van Vledder G, Wolf J, Young I (2007) Wave modelling—the state of the art. Prog Oceanogr 75:603–674. https://doi.org/10.1016/j.pocean.2007.05.005

    Article  Google Scholar 

  • Chawla A, Tolman H (2008) Obstruction grids for spectral wave models. Ocean Model 22(1–2):12–25. https://doi.org/10.1016/j.ocemod.2008.01.003

    Article  Google Scholar 

  • Chen G, Wang D, Dong C, Zu T, Xue H, Shu Y, Chu X, Qi Y, Chen H (2015) Observed deep energetic eddies by seamount wake. Nat Sci Rep 5:17416. https://doi.org/10.1038/srep17416

    Article  Google Scholar 

  • Davidson-Arnott R (2009) Introduction to coastal processes and geomorphology. Cambridge University Press, Cambridge, p 458 ISBN 978-0521696715

    Book  Google Scholar 

  • Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553e97. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • French SW, Romanowicz B (2015) Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525:95–99

    Article  Google Scholar 

  • Genz J, Aucan J, Merrifield M, Finney B, Joel K, Kelen A (2009) Wave navigation in the Marshall Islands: comparing indigenous and Western scientific knowledge of the ocean. Oceanography 22(2):234–245. https://doi.org/10.5670/oceanog.2009.52

    Article  Google Scholar 

  • Goda Y (2009) Random seas and design of maritime structures. Advanced Series on Ocean Engineering, World Scientific, vol 33. p 708. ISBN: 9789814282406

  • Hanley M, Hoggart S, Simmonds D, Bichot A, Colangelo M, Bozzeda F, Heurtefeux H, Ondiviela B, Ostrowski R, Recio M, Trude R, Zawadzka-Kahlau E (2013) Shifting sands? Coastal protection by sand banks, beaches and dunes. Coast Eng 87:136–146

    Article  Google Scholar 

  • Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press, Cambridge, p 404 ISBN: 9780521129954

    Book  Google Scholar 

  • Hope ME, Westerink JJ, Kennedy AB, Kerr PC, Dietrich JC, Dawson C, Bender CJ, Smith JM, Jensen RE, Zijlema M, Holthuijsen LH, Luettich RA, Powell MD, Cardone VJ, Cox AT, Pourtaheri H, Roberts HJ, Atkinson JH, Tanaka S, Westerink HJ, Westerink LG (2013) Hindcast and validation of Hurricane Ike (2008) waves, forerunner, and storm surge. JGR Oceans 118:4424–4460

    Google Scholar 

  • Huang Y, Weisberg RH, Zheng L, Zijlema M (2013) Gulf of Mexico hurricane wave simulations using SWAN: bulk formula based drag coefficient sensitivity for Hurricane Ike. JGR Oceans 118:3916–3938

    Google Scholar 

  • Jackson LA, Tomlinson RB, Turner I, Corbett B, D’Agata M, McGrath J (2005) Narrowneck Reef: results of 4 years monitoring and modifications, 4th Int Surfing Reef Symposium, Los Angeles, January 2005

  • Janssen P (2004) The interaction of ocean waves and wind. Cambridge University Press, Cambridge ISBN 9780511837647

    Book  Google Scholar 

  • Kearey P, Klepeis K, Vine F (2009) Global tectonics, 3rd edn. Wiley-Blackwell, Hoboken, p 496 ISBN 9781405107778

    Google Scholar 

  • Keating BH, Fryer P, Batiza R, Boehlert GW (1987) Seamounts, islands, and atolls. Geophysical Monograph Series V43, American Geophysical Union, Washington, D. C., 405 pp. ISBN 978-0875900681

  • Langhamer O, Haikonen K, Sundberg J (2010) Wave power—sustainable energy or environmentally costly? A review with special emphasis on linear wave energy converters. Renew Sust Energ Rev 14-4:1329–1335. https://doi.org/10.1016/j.rser.2009.11.016

    Article  Google Scholar 

  • Lewis D (1994) We the navigators: the ancient art of landfinding in the Pacific, 2nd edn. 468 pp. ISBN: 978-0824815820

  • Lin JG (2013) An improvement of wave refraction-diffraction effect in SWAN. J Mar Sci Technol 21(2):198–208

    Google Scholar 

  • Liu PC, Chen HS, Doong D-J, Hsu Y-JG (2008) Monstrous ocean waves during typhoon Krosa. Ann Geophys 26:1327–1329

    Article  Google Scholar 

  • Nielsen P (2009) Coastal and estuarine processes, advanced series on ocean engineering. World Sci 29:343 ISBN: 9789812837127

    Google Scholar 

  • Pierson WJ, Marks W (1952) The power spectrum analysis of ocean-wave records. Earth Space Sci News 33(6):834–844

    Google Scholar 

  • Portilla J, Ocampo-Torres F, Monbaliu J (2009) Spectral partitioning and identification of wind-sea and swell. J Atmos Ocean Technol 26(1):107–122. https://doi.org/10.1175/2008JTECHO609.1

    Article  Google Scholar 

  • Portilla-Yandún J, Salazar A, Cavaleri L (2016) Climate patterns derived from ocean wave spectra. Geophys Res Lett 43:11,736–11–11,736743. https://doi.org/10.1002/2016GL071419

    Article  Google Scholar 

  • Proudman J (1916) On the motion of solids in a liquid possessing vorticity. Proc R Soc Lond A 92:408–424. Bibcode:1916RSPSA..92..408P. https://doi.org/10.1098/rspa.1916.0026

    Article  Google Scholar 

  • Ris RC, Booij N, Holthuijsen LH (1999) A third-generation wave model for coastal regions, Part II: verification. J Geophys Res 104(C4):7667–7681

    Article  Google Scholar 

  • Shim J-S, Chun I-S, Min I-K (2004) Construction of the Ieodo ocean research station and its operation. Proc. 14th Int. Off. Pol. Eng. Conf., Toulon, France, May 23–28, 2004

  • Short A, Woodroffe C (2009) The coast of Australia. Cambridge University Press, Cambridge, p 288 ISBN 978-0521873987

    Google Scholar 

  • Sinton J (1989) Evolution of mid ocean ridges. Geophysical Monograph Series, V57, American Geophysical Union, 77 pp. ISBN 9780875904580

  • Stopa J, Cheung K, Chen Y (2011) Assessment of wave energy resources in Hawaii. J Renew Energy 36(2):554–567. https://doi.org/10.1016/j.renene.2010.07.014

    Article  Google Scholar 

  • Taylor GI (1917) Motion of solids in fluids when the flow is not irrotational. Proc R Soc Lond A 93:92–113. Bibcode:1917RSPSA..93...99T. https://doi.org/10.1098/rspa.1917.0007

    Article  Google Scholar 

  • Wessel P, Sandwell D, Kim S (2010) The global seamount census. Oceanography 23:24–33

    Article  Google Scholar 

  • The SWAN Team (2017) SWAN user manual, Cycle III version 41.10A. University of Technology, Delft, p 135

    Google Scholar 

  • The WAMDI Group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18:1775–1810

    Article  Google Scholar 

  • Tolman HL, Banner ML, Kaihatu JM (2013) The NOPP operational wave model improvement project. Ocean Model 70:2–10. https://doi.org/10.1016/j.ocemod.2012.11.011

    Article  Google Scholar 

  • Wilson JT (1963) A possible origin of the Hawaiian Islands. Can J Phys 41:863–870 ISBN: 978-0-19-856611-3

    Article  Google Scholar 

  • Whittaker RJ (2007) Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford ISBN: 9780198566120

    Google Scholar 

  • Weiss KR (2015) Kiribati’s dilemma: before we drown we may die of thirst. Nature News 526(I7575):624–627. https://doi.org/10.1038/526624a

    Article  Google Scholar 

  • Yesson C, Clark M, Taylor M, Rogers A (2011) The global distribution of seamounts based on 30 arc seconds bathymetry data. Deep-Sea Res I Oceanogr Res Pap 58-4:442–453. https://doi.org/10.1016/j.dsr.2011.02.004

    Article  Google Scholar 

  • Zijlema M, van Vledder GP, Holthuijsen LH (2012) Bottom friction and wind drag for wave models. Coast Eng 65:19–26. https://doi.org/10.1016/j.coastaleng.2012.03.002

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from Escuela Politécnica Nacional (Projects PIMI1402 and PIJ1503) and Senescyt Scholarship AR2Q-000105-2015. Luigi Cavaleri was partially supported by the EU contract 730030 (call H2020-EO-2016, “CEASELESS”). We are warmly indebted to our good friend Gerbrant van Vledder for leading us to the discovery of the art of the Polynesian navigators. We acknowledge the useful suggestions by the anonymous reviewers that helped to straighten the paper and make more clear the general results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Portilla-Yandún.

Additional information

Responsible Editor: Alejandro Orfila

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosa, J., Cavaleri, L. & Portilla-Yandún, J. On the interaction between ocean surface waves and seamounts. Ocean Dynamics 67, 1553–1565 (2017). https://doi.org/10.1007/s10236-017-1107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1107-7

Keywords

Navigation