Ocean Dynamics

, Volume 67, Issue 9, pp 1195–1216 | Cite as

Regionality and seasonality of submesoscale and mesoscale turbulence in the North Pacific Ocean

  • Hideharu SasakiEmail author
  • Patrice Klein
  • Yoshikazu Sasai
  • Bo Qiu
Part of the following topical collections:
  1. Topical Collection on the 48th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 23-27 May 2016


The kinetic energy (KE) seasonality has been revealed by satellite altimeters in many oceanic regions. Question about the mechanisms that trigger this seasonality is still challenging. We address this question through the comparison of two numerical simulations. The first one, with a 1/10° horizontal grid spacing, 54 vertical levels, represents dynamics of physical scales larger than 50 km. The second one, with a 1/30° grid spacing, 100 vertical levels, takes into account the dynamics of physical scales down to 16 km. Comparison clearly emphasizes in the whole North Pacific Ocean, not only a significant KE increase by a factor up to three, but also the emergence of seasonal variability when the scale range 16–50 km (called submesoscales in this study) is taken into account. But the mechanisms explaining these KE changes display strong regional contrasts. In high KE regions, such the Kuroshio Extension and the western and eastern subtropics, frontal mixed-layer instabilities appear to be the main mechanism for the emergence of submesoscales in winter. Subsequent inverse kinetic energy cascade leads to the KE seasonality of larger scales. In other regions, in particular in subarctic regions, results suggest that the KE seasonality is principally produced by larger-scale instabilities with typical scales of 100 km and not so much by smaller-scale mixed-layer instabilities. Using arguments from geostrophic turbulence, the submesoscale impact in these regions is assumed to strengthen mesoscale eddies that become more coherent and not quickly dissipated, leading to a KE increase.


Submesoscale turbulence Scale interactions Mixed-layer instability High-resolution simulations North Pacific 



The simulations were performed on the Earth Simulator under support of JAMSTEC. H.S. is supported by CANON Foundation. P.K. acknowledges the support of IFREMER (through the MOU IFREMER-JAMSTEC), CNRS (France), and the Agence Nationale pour la Recherche [Contract ANR-10-LABX-19-01 (LabexMER)]. B.Q. acknowledges Science Team support from NASA’s SWOT mission NNX16AH66G. We appriciate comments from two reviewers, that significantly improved the manuscript.


  1. Boccaletti G, Ferrari R, Fox-Kemper B (2007) Mixed layer instabilities and restratification. J Phys Oceanogr 37(9):2228–2250CrossRefGoogle Scholar
  2. Buckingham CE, Naveira Garabato AC, Thompson AF, Brannigan L, Lazar A, Marshall DP, George Nurser AJ, Damerell G, Heywood KJ, Belcher SE (2016) Seasonality of submesoscale flows in the ocean surface boundary layer. Geophys Res Lett 43(5):2118–2126CrossRefGoogle Scholar
  3. Callies J, Ferrari R, Klymak JM, Gula J (2015) Seasonality in submesoscale turbulence. Nat Commun 6:6862. doi: 10.1038/ncomms7862 CrossRefGoogle Scholar
  4. Callies J, Flierl G, Ferrari R, Fox-Kemper B (2016) The role of mixed-layer instabilities in submesoscale turbulence. J Fluid Mech 788:5–41CrossRefGoogle Scholar
  5. Capet X, Campos EJ, Paiva M (2008a) Submesoscale activity over the Argentinian shelf. Geophys Res Lett 35:2–6CrossRefGoogle Scholar
  6. Capet X, Klein P, Hua BL, Lapeyre G, Mcwilliams JC (2008b) Surface kinetic energy transfer in surface quasi-geostrophic flows. J Fluid Mech 604:165–174CrossRefGoogle Scholar
  7. Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008c) Mesoscale to submesoscale transition in the California current system. Part III: energy balance and flux. J Phys Oceanogr 38(10):2256–2269CrossRefGoogle Scholar
  8. Capet X, Roullet G, Klein P, Maze G (2016) Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J Phys Oceanogr 46(11):3365–3384CrossRefGoogle Scholar
  9. Chen R, Flierl GR, Wunsch C (2014) A description of local and nonlocal eddy–mean flow interaction in a global eddy-permitting state estimate. J Phys Oceanogr 44(9):2336–2352CrossRefGoogle Scholar
  10. Chen R, Thompson AF, Flierl GR (2016) Time-dependent eddy-mean energy diagrams and their application to the ocean. J Phys Oceanogr 46(9):2827–2850CrossRefGoogle Scholar
  11. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003CrossRefGoogle Scholar
  12. Dufau C, Orsztynowicz M, Dibarboure G, Morrow R, Le Traon PY (2016) Mesoscale resolution capability of altimetry: present and future. J Geophys Res Oceans 121(7):4910–4927CrossRefGoogle Scholar
  13. Ferrari R, Wunsch C (2009) Ocean circulation kinetic energy: reservoirs, souces and sinks. Ann Rev Fluid Mech 41(1):253–282CrossRefGoogle Scholar
  14. Fox-Kemper B, Ferrari R, Hallberg R (2008) Parameterization of mixed layer eddies. Part I: theory and diagnosis. J Phys Oceanogr 38(6):1145–1165CrossRefGoogle Scholar
  15. Haines T, Marshall JC (1998) Gravitational, symmetric and baroclinic instability of the ocean mixed-layer. J Phys Oceanogr 28(4):634–658CrossRefGoogle Scholar
  16. Hakim GJ, Snyder C, Muraki DJ (2002) A new surface model for cyclone–anticyclone asymmetry. J Atmos Sci 59(16):2405–2420CrossRefGoogle Scholar
  17. Hanawa K, Talley LD (2001) Mode waters. In: Siedler G, Church J, Gould J (eds) Ocean circulation and climate: observing and modelling the global ocean. Academic, San Diego, pp 373–386CrossRefGoogle Scholar
  18. Hautala SL, Roemmich DH (1998) Subtropical mode water in the Northeast Pacific Basin. J Geophys Res Oceans 103(C6):13055–13066CrossRefGoogle Scholar
  19. Haza AC, Ozgökmen TM, Griffa A, Garaffo ZD, Piterbarg L (2012) Parameterization of particle transport at submesoscales in the Gulf Stream region using Lagrangian subgridscale models. Ocean Model 42:31–49CrossRefGoogle Scholar
  20. Held IM, Pierrehumbert RT, Garner ST, Swanson KL (1995) Surface quasigeostrophic dynamics. J Fluid Mechan 282:1–20CrossRefGoogle Scholar
  21. Joseph B, Legras B (2002) Relation between kinematic boundaries, stirring and barriers for the Antartic polar vortex. J Atmos Sci 59:1198–1212CrossRefGoogle Scholar
  22. Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375CrossRefGoogle Scholar
  23. Klein P, Hua BL, Lapeyre G, Capet X, Le Gentil S, Sasaki H (2008) Upper ocean turbulence from high-resolution 3D simulations. J Phys Oceanogr 38:1748–1763CrossRefGoogle Scholar
  24. Komori N, Takahashi K, Komine K, Motoi T, Zhang X, Sagawa G (2005) Description of sea-ice component of coupled ocean sea-ice model for the earth simulator (oifes). J Earth Simul 4:31–45Google Scholar
  25. Lapeyre G (2002) Characterization of finite-time Lyapunov exponents and vectors in two-dimensional turbulence. Chaos 12:688–698CrossRefGoogle Scholar
  26. Lapeyre G, Klein P, Hua BL (1999) Does the tracer gradient vector align with the strain eigenvectors in 2-D turbulence? Phys Fluids 11:3729–3737CrossRefGoogle Scholar
  27. Lapeyre G, Klein P, Hua BL (2006) Oceanic restratification forced by surface frontogenesis. J Phys Oceanogr 36(8):1577–1590CrossRefGoogle Scholar
  28. Lévy M, Ferrari R, Franks PJS, Martin AP, Rivière P (2012a) Bringing physics to life at the submesoscale. Geophys Res Lett 39(14):L14602. doi: 10.1029/2012GL052756 CrossRefGoogle Scholar
  29. Lévy M, Resplandy L, Klein P, Capet X, Iovino D, Éthé C (2012b) Grid degradation of submesoscale resolving ocean models: benefits for offline passive tracer transport. Ocean Model 48:1–9CrossRefGoogle Scholar
  30. Masumoto Y et al (2004) A fifty-year eddy-resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simul 1:35–56Google Scholar
  31. McWilliams JC (2016) Submesoscale currents in the ocean. Proc R Soc A 472:20160117CrossRefGoogle Scholar
  32. McWilliams JC, Colas F, Molemaker MJ (2009) Cold filamentary intensification and oceanic surface convergence lines. Geophys Res Lett 36:1–5CrossRefGoogle Scholar
  33. Mensa JA, Garraffo Z, Griffa A, Özgökmen TM, Haza A, Veneziani M (2013) Seasonality of the submesoscale dynamics in the Gulf Stream region. Ocean Dyn 63:923–941CrossRefGoogle Scholar
  34. Nakamura N (1988) Scale selection of baroclinic instability—effects of stratification and nongeostrophy. J Atmos Sci 45(21):3253–3268CrossRefGoogle Scholar
  35. Noh Y, Kim HJ (1999) Simulations of temperature and turbulence structure of the oceanic boundary layer with the improved near-surface process. J Geophys Res Oceans 104(C7):15621–15634CrossRefGoogle Scholar
  36. Nonaka M, Sasai Y, Sasaki H, Taguchi B, Nakamura H (2016) How potentially predictable are midlatitude ocean currents? Sci Rep 6:20153. doi: 10.1038/srep20153 CrossRefGoogle Scholar
  37. Onogi K et al (2007) The jra-25 reanalysis. J Met Soc Jap 85(3):369–432CrossRefGoogle Scholar
  38. Pacanowski RC, Griffies SM (1999) The MOM 3 manual, GFDL Ocean Group Tech. Rep. 4, 680 pp., NOAA/Geophys Fluid Dyn Lab, PrincetonGoogle Scholar
  39. Pierrehumbert RT, Held IM, Swanson KL (1994) Spectra of local and non-local two-dimensional turbulence. Chaos 4:1111–1116Google Scholar
  40. Qiu B (1999) Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent: TOPEX/POSEIDON observations and theory. J Phys Oceanogr 29(10):2471–2486CrossRefGoogle Scholar
  41. Qiu B, Scott R, Chen S (2008) Length scales of eddy generation and nonlinear evolution of the seasonally-modulated South Pacific Subtropical Countercurrent. J Phys Oceanogr 38(7):1515–1528CrossRefGoogle Scholar
  42. Qiu B, Chen S, Klein P, Sasaki H, Sasai Y (2014) Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. J Phys Oceanogr 44(12):3079–3098CrossRefGoogle Scholar
  43. Roullet G, McWilliams JC, Capet X, Molemaker MJ (2012) Properties of steady geostrophic turbulence with isopycnal outcropping. J Phys Oceanogr 42(1):18–38CrossRefGoogle Scholar
  44. Sasaki H, Klein P (2012) SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J Phys Oceanogr 42(7):1233–1241CrossRefGoogle Scholar
  45. Sasaki H, Klein P, Qiu B, Sasai Y (2014) Impact of oceanic scale-interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat Commun 5:5636. doi: 10.1038/ncomms6636 CrossRefGoogle Scholar
  46. Stone PH (1966) On non-geostrophic baroclinic instability. J Atmos Sci 23:3253–3268Google Scholar
  47. Suga T, Motoki K, Aoki Y, Macdonald AM (2004) The North Pacific climatology of winter mixed layer and mode waters. J Phys Oceanogr 34(1):3–22CrossRefGoogle Scholar
  48. Thompson AF, Lazar A, Buckingham C, Naveira Garabato AC, Damerell GM, Heywood KJ (2016) Open-ocean submesoscale motions: a full seasonal cycle of mixed layer instabilities from gliders. J Phys Oceanogr 46(4):1285–1307CrossRefGoogle Scholar
  49. Tulloch R, Marshall J, Hill C (2011) Scales, growth rates and spectral fluxes of baroclinic instability in the ocean. J Phys Oceanogr 41(6):1057–1076CrossRefGoogle Scholar
  50. Vallis GK (2006) Atmospheric and oceanic fluid dynamics. Cambridge University Press, 745 ppGoogle Scholar
  51. Zhai X, Greatbatch RJ, Kohlmann JD (2008) On the seasonal variability of eddy kinetic energy in the Gulf Stream region. Geophys Res Lett 35(24):L24609. doi: 10.1029/2008GL036412 CrossRefGoogle Scholar
  52. Zhong Y, Bracco A (2013) Submesoscale impacts on horizontal and vertical transport in the Gulf of Mexico. J Geophys Res 118(10):5651–5668CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Application LaboratoryJAMSTECYokohamaJapan
  2. 2.Laboratoire d’Océanographie Physique et SpatialeIFREMER-CNRS-UBO-IRDPlouzaneFrance
  3. 3.Research and Development Center for Global ChangeJAMSTECYokohamaJapan
  4. 4.Department of OceanographyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations