Assessing an ensemble Kalman filter inference of Manning’s n coefficient of an idealized tidal inlet against a polynomial chaos-based MCMC

Abstract

Bayesian estimation/inversion is commonly used to quantify and reduce modeling uncertainties in coastal ocean model, especially in the framework of parameter estimation. Based on Bayes rule, the posterior probability distribution function (pdf) of the estimated quantities is obtained conditioned on available data. It can be computed either directly, using a Markov chain Monte Carlo (MCMC) approach, or by sequentially processing the data following a data assimilation approach, which is heavily exploited in large dimensional state estimation problems. The advantage of data assimilation schemes over MCMC-type methods arises from the ability to algorithmically accommodate a large number of uncertain quantities without significant increase in the computational requirements. However, only approximate estimates are generally obtained by this approach due to the restricted Gaussian prior and noise assumptions that are generally imposed in these methods. This contribution aims at evaluating the effectiveness of utilizing an ensemble Kalman-based data assimilation method for parameter estimation of a coastal ocean model against an MCMC polynomial chaos (PC)-based scheme. We focus on quantifying the uncertainties of a coastal ocean ADvanced CIRCulation (ADCIRC) model with respect to the Manning’s n coefficients. Based on a realistic framework of observation system simulation experiments (OSSEs), we apply an ensemble Kalman filter and the MCMC method employing a surrogate of ADCIRC constructed by a non-intrusive PC expansion for evaluating the likelihood, and test both approaches under identical scenarios. We study the sensitivity of the estimated posteriors with respect to the parameters of the inference methods, including ensemble size, inflation factor, and PC order. A full analysis of both methods, in the context of coastal ocean model, suggests that an ensemble Kalman filter with appropriate ensemble size and well-tuned inflation provides reliable mean estimates and uncertainties of Manning’s n coefficients compared to the full posterior distributions inferred by MCMC.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

References

  1. Aksoy A, Zhang F, Nielsen-Gammon J (2006) Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Month Weather Rev 134(10):2951–2970

    Article  Google Scholar 

  2. Alexanderian A, Winokur J, Sraj I, Srinivasan A, Iskandarani M, Thacker W, Knio O (2012) Global sensitivity analysis in an ocean general circulation model: vol 16

  3. Altaf M, Gharamti ME, Heemink A, Hoteit I (2013a) A reduced adjoint approach to variational data assimilation. Comput Methods Appl Mech Eng 254:1–13. doi:http://dx.doi.org/10.1016/j.cma.2012.10.003

    Article  Google Scholar 

  4. Altaf M, Butler T, Luo X, Dawson C, Mayo T, Hoteit I (2013b) Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon Weather Rev 141(8):2705–2720

    Article  Google Scholar 

  5. Altaf M, Raboudi N, Gharamti M, Dawson C, McCabe M, Hoteit I (2014) Hybrid vs adaptive ensemble Kalman filtering for storm surge forecasting. AGU Fall Meet Abst 1:3352

    Google Scholar 

  6. Anderson J (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129(12):2884–2903

    Article  Google Scholar 

  7. Anderson J, Anderson S (1999) A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev 127(12):2741–2758. doi:10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2

    Article  Google Scholar 

  8. Andrieu C, Moulines É (2006) On the ergodicity properties of some adaptive MCMC algorithms. Ann Appl Probab 16(3):1462–1505

    Article  Google Scholar 

  9. Annan J, Hargreaves J, Edwards N, Marsh R (2005) Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Model 8(1):135–154

    Article  Google Scholar 

  10. Arcement GJ, Schneider VR (1989) Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. Tech. rep., USGPO. For sale by the Books and Open-File Reports Section, US Geological Survey

  11. Besag JP, Green DH, Mengersen K (1995) Bayesian computation and stochastic systems. Stat Sci 10:3–41

    Article  Google Scholar 

  12. Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform Kalman filter. Part i: theoretical aspects. Mon Weather Rev 129(3):420–436

    Article  Google Scholar 

  13. Budgell WP (1987) Stochastic filtering of linear shallow water wave processes. SIAM J Sci Stat Comput 8(2):152–170. doi:10.1137/0908027

    Article  Google Scholar 

  14. Bunya S, Dietrich J, Westerink J, Ebersole B, Smith J, Atkinson J, Jensen R, Resio D, Luettich R, Dawson C et al (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for Southern Louisiana and Mississippi. Part i: model development and validation. Mon Weather Rev 138(2):345–377

    Article  Google Scholar 

  15. Burgers G, van Leeuwen PJ, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126(6):1719–1724. doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2

    Article  Google Scholar 

  16. Butler T, Altaf M, Dawson C, Hoteit I, Luo X, Mayo T (2012) Data assimilation within the advanced circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Mon Weather Rev 140(7):2215–2231

    Article  Google Scholar 

  17. DeChant CM, Moradkhani H (2012) Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting. Water Resour Res 48(4)

  18. Derber J, Rosati A (1989) A global oceanic data assimilation system. J Phys Oceanogr 19(9):1333–1347

    Article  Google Scholar 

  19. Dietrich J, Bunya S, Westerink J, Ebersole B, Smith J, Atkinson J, Jensen R, Resio D, Luettich R, Dawson C et al (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for Southern Louisiana and Mississippi. Part ii: synoptic description and analysis of hurricanes Katrina and Rita. Mon Weather Rev 138(2):378–404

    Article  Google Scholar 

  20. Dietrich J, Westerink J, Kennedy A, Smith J, Jensen R, Zijlema M, Holthuijsen L, Dawson C, RL Jr, Powell M et al (2011) Hurricane Gustav (2008) waves and storm surge: hindcast, synoptic analysis, and validation in Southern Louisiana. Mon Weather Rev 139(8):2488–2522

    Article  Google Scholar 

  21. Dimet FXL, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38A(2):97–110. doi:10.1111/j.1600-0870.1986.tb00459.x

    Article  Google Scholar 

  22. Evensen G (1994) Inverse methods and data assimilation in nonlinear ocean models. Physica (D) 77:108–129

    Google Scholar 

  23. Evensen G (2009a) Data assimilation: the ensemble Kalman filter. Springer, Verlag

    Google Scholar 

  24. Evensen G (2009b) The ensemble Kalman filter for combined state and parameter estimation. Control Syst IEEE 29(3):83–104

    Article  Google Scholar 

  25. Evensen G (2013) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367

    Article  Google Scholar 

  26. Franssen HH, Kinzelbach W (2008) Real-time groundwater flow modeling with the ensemble Kalman filter: joint estimation of states and parameters and the filter inbreeding problem. Water Resour Res 44(9)

  27. Gamerman D, Lopes H (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  28. Ghanem R, Red-Horse J (1999) Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach. Fluid Dyn Res 133:137–144

    Google Scholar 

  29. Ghanem R, Spanos P (2002) Stochastic finite elements: a spectral approach, 2nd edn. Dover, New York

    Google Scholar 

  30. Gharamti ME, Hoteit I, Valstar J (2013) Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering. Adv Water Resour 60:75–88. doi:10.1016/j.advwatres.2013.07.011

    Article  Google Scholar 

  31. Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multiGaussian fields. Springer, Netherlands, pp 85–94

    Google Scholar 

  32. Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242

    Article  Google Scholar 

  33. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109. doi:10.1093/biomet/57.1.97

    Article  Google Scholar 

  34. Hill D (2007) Tidal modeling of Glacier Bay, Alaska—methodology, results, and applications. Tech. rep., Department of Civil. Environmental Engineering, The Pennsylvania State University

  35. Ho Y, Lee R (1964) A Bayesian approach to problems in stochastic estimation and control. IEEE Trans Autom Control 9(4):333–339. doi:10.1109/TAC.1964.1105763

    Article  Google Scholar 

  36. Höllt T, Altaf MU, Mandli KT, Hadwiger M, Dawson CN, Hoteit I (2015) Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system. Nat Hazards 77(1):317–336

    Article  Google Scholar 

  37. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J Marine Syst 36(1–2):101–127. doi:10.1016/S0924-7963(02)00129-X

    Article  Google Scholar 

  38. Hoteit I, Triantafyllou G, Korres G (2007) Using low-rank ensemble Kalman filters for data assimilation with high dimensional imperfect models. JNAIAM 2(1-2):67–78

    Google Scholar 

  39. Hoteit I, Hoar T, Collins N, Anderson J, Cornuelle B, Heimbach P (2008) A MITgcm/DART ocean analysis and prediction system with application to the Gulf of Mexico. AGU Fall Meet Abst 1:1288

    Google Scholar 

  40. Hoteit I, Pham DT, Gharamti M, Luo X (2015) Mitigating observation perturbation sampling errors in the stochastic EnKF. Month Weather Rev

  41. Jelesnianski CP (1966) Numerical computations of storm surges without bottom stress. Mon Weather Rev 94(6):379–394

    Article  Google Scholar 

  42. Kaipio JP, Somersalo E (2005) Statistical inversion theory. Stat Comput Inverse Probl 49–114

  43. Kalman R (1960) A new approach to linear filtering and prediction problems 1. Trans ASME–J Basic Eng 82(Series D):35–45

    Article  Google Scholar 

  44. Kennedy M, O’Hagan A (2011a) Bayesian calibration of computer models. J Royal Stat Soc. Series B (Stat Method) 63 (2001) 63:425–464

    Article  Google Scholar 

  45. Kennedy AB, Gravois U, Zachry BC, Westerink JJ, Hope ME, Dietrich JC, Powell MD, Cox AT, Luettich RA, Dean RG (2011b) Origin of the hurricane Ike forerunner surge. Geophys Res Lett 38(8)

  46. Kinnmark IP, Gray WG (1985) The 2x-test: a tool for analyzing spurious oscillations. Adv Water Resour 8(3):129–135. doi:10.1016/0309-1708(85)90053-3

    Article  Google Scholar 

  47. Kivman GA (2003) Sequential parameter estimation for stochastic systems. Nonlin Process Geophys 10(3):253–259

    Article  Google Scholar 

  48. Knio O, Maitre O (2006) Uncertainty propagation in CFD using polynomial chaos decomposition. Physica D 38:616–640

    Google Scholar 

  49. Law K, Stuart A (2012) Evaluating data assimilation algorithms. Mon Weather Rev 140(11):3757–3782

    Article  Google Scholar 

  50. Le Maitre O, Knio O (2010) Spectral methods for uncertainty quantification with applications to computational fluid dynamics. Springer, Berlin

    Google Scholar 

  51. Le Maitre O, Knio O, Najm H, Ghanem R (2001) A stochastic projection method for fluid flow. I. Basic formulation. J Comput Phys 173:481–511

    Article  Google Scholar 

  52. Le Maitre O, Najm H, Pébay P, Ghanem R, Knio O (2007) Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM J Sci Comput 29(2):864–889

    Article  Google Scholar 

  53. Li G, Iskandarani M, Hénaff ML, Winokur J, Le Maître OP, Knio OM (2016) Quantifying initial and wind forcing uncertainties in the Gulf of Mexico. Comput Geosci 1–21. doi:10.1007/s10596-016-9581-4

  54. Luettich R, Westerink J (2004) Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44. XX. R Luettich

  55. Luettich R Jr, Westerink J, Scheffner NW (1992) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Tech. rep. Coastal Engineering Research Center Vicksburg MS

  56. Luo X, Hoteit I (2011) Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter. Mon Weather Rev 139:3938–3953

    Article  Google Scholar 

  57. Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comput Fluids 7(3):207–228. doi:10.1016/0045-7930(79)90037-9

    Article  Google Scholar 

  58. Martino L, Míguez J (2010) A generalization of the adaptive rejection sampling algorithm. Stat Comput 21(4):633–647. doi:10.1007/s11222-010-9197-9

    Article  Google Scholar 

  59. Mayo T, Butler T, Dawson C, Hoteit I (2014) Data assimilation within the advanced circulation (ADCIRC) modeling framework for the estimation of Manning’s friction coefficient. Ocean Model 76:43–58

    Article  Google Scholar 

  60. Najm H, Debusschere B, Marzouk Y, Widmer S, Maître OL (2009) Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. Int J Numer Methods Eng 80(6):789–814

    Article  Google Scholar 

  61. Pham D (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon Weather Rev 12(5):1194–1207

    Article  Google Scholar 

  62. Phenix B, Dinaro J, Tatang M, Tester J, Howard J, McRae G (1998) Incorporation of parametric uncertainty into complex kinetic mechanisms: application to hydrogen oxidation in supercritical water. Combus Flame 112:132–146

    Article  Google Scholar 

  63. Posselt DJ, Bishop CH (2012) Nonlinear parameter estimation: comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon Weather Rev 140(6):1957–1974

    Article  Google Scholar 

  64. Rasmussen CE (2006) Gaussian processes for machine learning. MIT Press

  65. Robert P, Casella G (2004) Monte Carlo statistical methods. Appl Math Sci 160(ISBN 0-387-22073-9):344

    Google Scholar 

  66. Roberts GO, Gelman A, Gilks WR (1997) Weak convergence and optimal scaling of random walk metropolis algorithms. Ann Appl Probab 7(1):110–120. doi:10.1214/aoap/1034625254

    Article  Google Scholar 

  67. Serafy GYHE, Mynett AE (2008) Improving the operational forecasting system of the stratified flow in Osaka Bay using an ensemble Kalman filter-based steady state Kalman filter. Water Resour Res 44:W06,416. doi:10.1029/2006WR005,412

    Article  Google Scholar 

  68. Song H, Hoteit I, Cornuelle BD, Luo X, Subramanian AC (2013) An adjoint-based adaptive ensemble Kalman filter. Mon Weather Rev 141(10):3343–3359

    Article  Google Scholar 

  69. Sraj I, Iskandarani M, Srinivasan A, Thacker WC, Winokur J, Alexanderian A, Lee CY, Chen SS, Knio OM (2013) Bayesian inference of drag parameters using AXBT data from typhoon Fanapi. Mon Weather Rev 141(7):2347–2367

    Article  Google Scholar 

  70. Sraj I, Mandli K, Knio O, Dawson C, Hoteit I (2014) Uncertainty quantification and inference of Manning’s friction coefficients using dart buoy data during the Tōhoku Tsunami. Ocean Model 83:82–97

    Article  Google Scholar 

  71. Sraj I, Le Maître O, Knio O, Hoteit I (2016a) Coordinate transformation and polynomial chaos for the Bayesian inference of a gaussian process with parametrized prior covariance function. Comput Methods Appl Mech Eng 298:205–228

    Article  Google Scholar 

  72. Sraj I, Zedler S, Knio O, Jackson C, Hoteit I (2016b) Polynomial chaos-based Bayesian inference of k-profile parameterization in a general circulation model of the tropical Pacific. Mon Weather Rev. doi:10.1175/MWR-D-15-0394.1

  73. Tagade PM, Choia HL (2014) A generalized polynomial chaos-based method for efficient Bayesian calibration of uncertain computational models. Inverse Probl Sci Eng 22(4):602–624

    Article  Google Scholar 

  74. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Siam

  75. Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble square root filters. Mon Weather Rev 131(7):1485–1490

    Article  Google Scholar 

  76. Triantafyllou G, Hoteit I, Petihakis G (2003) A singular evolutive interpolated Kalman filter for efficient data assimilation in a 3-D complex physical–biogeochemical model of the Cretan Sea. J Mar Syst 40:213–231

    Article  Google Scholar 

  77. van Leeuwen PJ (2009) Particle filtering in geophysical systems. Mon Weather Rev 137(12):4089–4114

    Article  Google Scholar 

  78. Westerink JJ, Luettich RA, Feyen JC, Atkinson JH, Dawson C, Roberts HJ, Powell MD, Dunion JP, Kubatko EJ, Pourtaheri H (2008) A basin-to channel-scale unstructured grid hurricane storm surge model applied to Southern Louisiana. Mon Weather Rev 136(3):833–864

    Article  Google Scholar 

  79. Yanagi T (1999) Coastal oceanography, vol 1. Springer

Download references

Acknowledgements

This work was supported by the King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia grant number CRG3-2016. C. Dawson also acknowledges support of the Gulf of Mexico Research Initiative Center for Advanced Research on Transport of Hydrocarbons in the Environment (CARTHE).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Hoteit.

Additional information

This article is part of the Topical Collection on the 18th Joint Numerical Sea Modelling Group Conference, Oslo, Norway, 10-12 May 2016

Responsible Editor: Martin Verlaan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Siripatana, A., Mayo, T., Sraj, I. et al. Assessing an ensemble Kalman filter inference of Manning’s n coefficient of an idealized tidal inlet against a polynomial chaos-based MCMC. Ocean Dynamics 67, 1067–1094 (2017). https://doi.org/10.1007/s10236-017-1074-z

Download citation

Keywords

  • Coastal ocean model
  • Manning’s n coefficients
  • Parameter estimation
  • Ensemble Kalman filter
  • Polynomial chaos
  • MCMC