Ocean Dynamics

, Volume 67, Issue 8, pp 1067–1094 | Cite as

Assessing an ensemble Kalman filter inference of Manning’s n coefficient of an idealized tidal inlet against a polynomial chaos-based MCMC

  • Adil Siripatana
  • Talea Mayo
  • Ihab Sraj
  • Omar Knio
  • Clint Dawson
  • Olivier Le Maitre
  • Ibrahim HoteitEmail author
Part of the following topical collections:
  1. Topical Collection on the 18th Joint Numerical Sea Modelling Group Conference, Oslo, Norway, 10-12 May 2016


Bayesian estimation/inversion is commonly used to quantify and reduce modeling uncertainties in coastal ocean model, especially in the framework of parameter estimation. Based on Bayes rule, the posterior probability distribution function (pdf) of the estimated quantities is obtained conditioned on available data. It can be computed either directly, using a Markov chain Monte Carlo (MCMC) approach, or by sequentially processing the data following a data assimilation approach, which is heavily exploited in large dimensional state estimation problems. The advantage of data assimilation schemes over MCMC-type methods arises from the ability to algorithmically accommodate a large number of uncertain quantities without significant increase in the computational requirements. However, only approximate estimates are generally obtained by this approach due to the restricted Gaussian prior and noise assumptions that are generally imposed in these methods. This contribution aims at evaluating the effectiveness of utilizing an ensemble Kalman-based data assimilation method for parameter estimation of a coastal ocean model against an MCMC polynomial chaos (PC)-based scheme. We focus on quantifying the uncertainties of a coastal ocean ADvanced CIRCulation (ADCIRC) model with respect to the Manning’s n coefficients. Based on a realistic framework of observation system simulation experiments (OSSEs), we apply an ensemble Kalman filter and the MCMC method employing a surrogate of ADCIRC constructed by a non-intrusive PC expansion for evaluating the likelihood, and test both approaches under identical scenarios. We study the sensitivity of the estimated posteriors with respect to the parameters of the inference methods, including ensemble size, inflation factor, and PC order. A full analysis of both methods, in the context of coastal ocean model, suggests that an ensemble Kalman filter with appropriate ensemble size and well-tuned inflation provides reliable mean estimates and uncertainties of Manning’s n coefficients compared to the full posterior distributions inferred by MCMC.


Coastal ocean model Manning’s n coefficients Parameter estimation Ensemble Kalman filter Polynomial chaos MCMC 



This work was supported by the King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia grant number CRG3-2016. C. Dawson also acknowledges support of the Gulf of Mexico Research Initiative Center for Advanced Research on Transport of Hydrocarbons in the Environment (CARTHE).


  1. Aksoy A, Zhang F, Nielsen-Gammon J (2006) Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model. Month Weather Rev 134(10):2951–2970CrossRefGoogle Scholar
  2. Alexanderian A, Winokur J, Sraj I, Srinivasan A, Iskandarani M, Thacker W, Knio O (2012) Global sensitivity analysis in an ocean general circulation model: vol 16Google Scholar
  3. Altaf M, Gharamti ME, Heemink A, Hoteit I (2013a) A reduced adjoint approach to variational data assimilation. Comput Methods Appl Mech Eng 254:1–13. doi: CrossRefGoogle Scholar
  4. Altaf M, Butler T, Luo X, Dawson C, Mayo T, Hoteit I (2013b) Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon Weather Rev 141(8):2705–2720CrossRefGoogle Scholar
  5. Altaf M, Raboudi N, Gharamti M, Dawson C, McCabe M, Hoteit I (2014) Hybrid vs adaptive ensemble Kalman filtering for storm surge forecasting. AGU Fall Meet Abst 1:3352Google Scholar
  6. Anderson J (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129(12):2884–2903CrossRefGoogle Scholar
  7. Anderson J, Anderson S (1999) A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon Weather Rev 127(12):2741–2758. doi: 10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2 CrossRefGoogle Scholar
  8. Andrieu C, Moulines É (2006) On the ergodicity properties of some adaptive MCMC algorithms. Ann Appl Probab 16(3):1462–1505CrossRefGoogle Scholar
  9. Annan J, Hargreaves J, Edwards N, Marsh R (2005) Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter. Ocean Model 8(1):135–154CrossRefGoogle Scholar
  10. Arcement GJ, Schneider VR (1989) Guide for selecting Manning’s roughness coefficients for natural channels and flood plains. Tech. rep., USGPO. For sale by the Books and Open-File Reports Section, US Geological SurveyGoogle Scholar
  11. Besag JP, Green DH, Mengersen K (1995) Bayesian computation and stochastic systems. Stat Sci 10:3–41CrossRefGoogle Scholar
  12. Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform Kalman filter. Part i: theoretical aspects. Mon Weather Rev 129(3):420–436CrossRefGoogle Scholar
  13. Budgell WP (1987) Stochastic filtering of linear shallow water wave processes. SIAM J Sci Stat Comput 8(2):152–170. doi: 10.1137/0908027 CrossRefGoogle Scholar
  14. Bunya S, Dietrich J, Westerink J, Ebersole B, Smith J, Atkinson J, Jensen R, Resio D, Luettich R, Dawson C et al (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for Southern Louisiana and Mississippi. Part i: model development and validation. Mon Weather Rev 138(2):345–377CrossRefGoogle Scholar
  15. Burgers G, van Leeuwen PJ, Evensen G (1998) Analysis scheme in the ensemble Kalman filter. Mon Weather Rev 126(6):1719–1724. doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 CrossRefGoogle Scholar
  16. Butler T, Altaf M, Dawson C, Hoteit I, Luo X, Mayo T (2012) Data assimilation within the advanced circulation (ADCIRC) modeling framework for hurricane storm surge forecasting. Mon Weather Rev 140(7):2215–2231CrossRefGoogle Scholar
  17. DeChant CM, Moradkhani H (2012) Examining the effectiveness and robustness of sequential data assimilation methods for quantification of uncertainty in hydrologic forecasting. Water Resour Res 48(4)Google Scholar
  18. Derber J, Rosati A (1989) A global oceanic data assimilation system. J Phys Oceanogr 19(9):1333–1347CrossRefGoogle Scholar
  19. Dietrich J, Bunya S, Westerink J, Ebersole B, Smith J, Atkinson J, Jensen R, Resio D, Luettich R, Dawson C et al (2010) A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for Southern Louisiana and Mississippi. Part ii: synoptic description and analysis of hurricanes Katrina and Rita. Mon Weather Rev 138(2):378–404CrossRefGoogle Scholar
  20. Dietrich J, Westerink J, Kennedy A, Smith J, Jensen R, Zijlema M, Holthuijsen L, Dawson C, RL Jr, Powell M et al (2011) Hurricane Gustav (2008) waves and storm surge: hindcast, synoptic analysis, and validation in Southern Louisiana. Mon Weather Rev 139(8):2488–2522CrossRefGoogle Scholar
  21. Dimet FXL, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38A(2):97–110. doi: 10.1111/j.1600-0870.1986.tb00459.x CrossRefGoogle Scholar
  22. Evensen G (1994) Inverse methods and data assimilation in nonlinear ocean models. Physica (D) 77:108–129Google Scholar
  23. Evensen G (2009a) Data assimilation: the ensemble Kalman filter. Springer, VerlagCrossRefGoogle Scholar
  24. Evensen G (2009b) The ensemble Kalman filter for combined state and parameter estimation. Control Syst IEEE 29(3):83–104CrossRefGoogle Scholar
  25. Evensen G (2013) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53(4):343–367CrossRefGoogle Scholar
  26. Franssen HH, Kinzelbach W (2008) Real-time groundwater flow modeling with the ensemble Kalman filter: joint estimation of states and parameters and the filter inbreeding problem. Water Resour Res 44(9)Google Scholar
  27. Gamerman D, Lopes H (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  28. Ghanem R, Red-Horse J (1999) Propagation of probabilistic uncertainty in complex physical systems using a stochastic finite element approach. Fluid Dyn Res 133:137–144Google Scholar
  29. Ghanem R, Spanos P (2002) Stochastic finite elements: a spectral approach, 2nd edn. Dover, New YorkGoogle Scholar
  30. Gharamti ME, Hoteit I, Valstar J (2013) Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering. Adv Water Resour 60:75–88. doi: 10.1016/j.advwatres.2013.07.011 CrossRefGoogle Scholar
  31. Gómez-Hernández JJ, Journel AG (1993) Joint sequential simulation of multiGaussian fields. Springer, Netherlands, pp 85–94Google Scholar
  32. Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242CrossRefGoogle Scholar
  33. Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1):97–109. doi: 10.1093/biomet/57.1.97 CrossRefGoogle Scholar
  34. Hill D (2007) Tidal modeling of Glacier Bay, Alaska—methodology, results, and applications. Tech. rep., Department of Civil. Environmental Engineering, The Pennsylvania State UniversityGoogle Scholar
  35. Ho Y, Lee R (1964) A Bayesian approach to problems in stochastic estimation and control. IEEE Trans Autom Control 9(4):333–339. doi: 10.1109/TAC.1964.1105763 CrossRefGoogle Scholar
  36. Höllt T, Altaf MU, Mandli KT, Hadwiger M, Dawson CN, Hoteit I (2015) Visualizing uncertainties in a storm surge ensemble data assimilation and forecasting system. Nat Hazards 77(1):317–336CrossRefGoogle Scholar
  37. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J Marine Syst 36(1–2):101–127. doi: 10.1016/S0924-7963(02)00129-X CrossRefGoogle Scholar
  38. Hoteit I, Triantafyllou G, Korres G (2007) Using low-rank ensemble Kalman filters for data assimilation with high dimensional imperfect models. JNAIAM 2(1-2):67–78Google Scholar
  39. Hoteit I, Hoar T, Collins N, Anderson J, Cornuelle B, Heimbach P (2008) A MITgcm/DART ocean analysis and prediction system with application to the Gulf of Mexico. AGU Fall Meet Abst 1:1288Google Scholar
  40. Hoteit I, Pham DT, Gharamti M, Luo X (2015) Mitigating observation perturbation sampling errors in the stochastic EnKF. Month Weather RevGoogle Scholar
  41. Jelesnianski CP (1966) Numerical computations of storm surges without bottom stress. Mon Weather Rev 94(6):379–394CrossRefGoogle Scholar
  42. Kaipio JP, Somersalo E (2005) Statistical inversion theory. Stat Comput Inverse Probl 49–114Google Scholar
  43. Kalman R (1960) A new approach to linear filtering and prediction problems 1. Trans ASME–J Basic Eng 82(Series D):35–45CrossRefGoogle Scholar
  44. Kennedy M, O’Hagan A (2011a) Bayesian calibration of computer models. J Royal Stat Soc. Series B (Stat Method) 63 (2001) 63:425–464CrossRefGoogle Scholar
  45. Kennedy AB, Gravois U, Zachry BC, Westerink JJ, Hope ME, Dietrich JC, Powell MD, Cox AT, Luettich RA, Dean RG (2011b) Origin of the hurricane Ike forerunner surge. Geophys Res Lett 38(8)Google Scholar
  46. Kinnmark IP, Gray WG (1985) The 2x-test: a tool for analyzing spurious oscillations. Adv Water Resour 8(3):129–135. doi: 10.1016/0309-1708(85)90053-3 CrossRefGoogle Scholar
  47. Kivman GA (2003) Sequential parameter estimation for stochastic systems. Nonlin Process Geophys 10(3):253–259CrossRefGoogle Scholar
  48. Knio O, Maitre O (2006) Uncertainty propagation in CFD using polynomial chaos decomposition. Physica D 38:616–640Google Scholar
  49. Law K, Stuart A (2012) Evaluating data assimilation algorithms. Mon Weather Rev 140(11):3757–3782CrossRefGoogle Scholar
  50. Le Maitre O, Knio O (2010) Spectral methods for uncertainty quantification with applications to computational fluid dynamics. Springer, BerlinCrossRefGoogle Scholar
  51. Le Maitre O, Knio O, Najm H, Ghanem R (2001) A stochastic projection method for fluid flow. I. Basic formulation. J Comput Phys 173:481–511CrossRefGoogle Scholar
  52. Le Maitre O, Najm H, Pébay P, Ghanem R, Knio O (2007) Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. SIAM J Sci Comput 29(2):864–889CrossRefGoogle Scholar
  53. Li G, Iskandarani M, Hénaff ML, Winokur J, Le Maître OP, Knio OM (2016) Quantifying initial and wind forcing uncertainties in the Gulf of Mexico. Comput Geosci 1–21. doi: 10.1007/s10596-016-9581-4
  54. Luettich R, Westerink J (2004) Formulation and numerical implementation of the 2D/3D ADCIRC finite element model version 44. XX. R LuettichGoogle Scholar
  55. Luettich R Jr, Westerink J, Scheffner NW (1992) ADCIRC: an advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Tech. rep. Coastal Engineering Research Center Vicksburg MSGoogle Scholar
  56. Luo X, Hoteit I (2011) Robust ensemble filtering and its relation to covariance inflation in the ensemble Kalman filter. Mon Weather Rev 139:3938–3953CrossRefGoogle Scholar
  57. Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comput Fluids 7(3):207–228. doi: 10.1016/0045-7930(79)90037-9 CrossRefGoogle Scholar
  58. Martino L, Míguez J (2010) A generalization of the adaptive rejection sampling algorithm. Stat Comput 21(4):633–647. doi: 10.1007/s11222-010-9197-9 CrossRefGoogle Scholar
  59. Mayo T, Butler T, Dawson C, Hoteit I (2014) Data assimilation within the advanced circulation (ADCIRC) modeling framework for the estimation of Manning’s friction coefficient. Ocean Model 76:43–58CrossRefGoogle Scholar
  60. Najm H, Debusschere B, Marzouk Y, Widmer S, Maître OL (2009) Multi-resolution-analysis scheme for uncertainty quantification in chemical systems. Int J Numer Methods Eng 80(6):789–814CrossRefGoogle Scholar
  61. Pham D (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon Weather Rev 12(5):1194–1207CrossRefGoogle Scholar
  62. Phenix B, Dinaro J, Tatang M, Tester J, Howard J, McRae G (1998) Incorporation of parametric uncertainty into complex kinetic mechanisms: application to hydrogen oxidation in supercritical water. Combus Flame 112:132–146CrossRefGoogle Scholar
  63. Posselt DJ, Bishop CH (2012) Nonlinear parameter estimation: comparison of an ensemble Kalman smoother with a Markov chain Monte Carlo algorithm. Mon Weather Rev 140(6):1957–1974CrossRefGoogle Scholar
  64. Rasmussen CE (2006) Gaussian processes for machine learning. MIT PressGoogle Scholar
  65. Robert P, Casella G (2004) Monte Carlo statistical methods. Appl Math Sci 160(ISBN 0-387-22073-9):344Google Scholar
  66. Roberts GO, Gelman A, Gilks WR (1997) Weak convergence and optimal scaling of random walk metropolis algorithms. Ann Appl Probab 7(1):110–120. doi: 10.1214/aoap/1034625254 CrossRefGoogle Scholar
  67. Serafy GYHE, Mynett AE (2008) Improving the operational forecasting system of the stratified flow in Osaka Bay using an ensemble Kalman filter-based steady state Kalman filter. Water Resour Res 44:W06,416. doi: 10.1029/2006WR005,412 CrossRefGoogle Scholar
  68. Song H, Hoteit I, Cornuelle BD, Luo X, Subramanian AC (2013) An adjoint-based adaptive ensemble Kalman filter. Mon Weather Rev 141(10):3343–3359CrossRefGoogle Scholar
  69. Sraj I, Iskandarani M, Srinivasan A, Thacker WC, Winokur J, Alexanderian A, Lee CY, Chen SS, Knio OM (2013) Bayesian inference of drag parameters using AXBT data from typhoon Fanapi. Mon Weather Rev 141(7):2347–2367CrossRefGoogle Scholar
  70. Sraj I, Mandli K, Knio O, Dawson C, Hoteit I (2014) Uncertainty quantification and inference of Manning’s friction coefficients using dart buoy data during the Tōhoku Tsunami. Ocean Model 83:82–97CrossRefGoogle Scholar
  71. Sraj I, Le Maître O, Knio O, Hoteit I (2016a) Coordinate transformation and polynomial chaos for the Bayesian inference of a gaussian process with parametrized prior covariance function. Comput Methods Appl Mech Eng 298:205–228CrossRefGoogle Scholar
  72. Sraj I, Zedler S, Knio O, Jackson C, Hoteit I (2016b) Polynomial chaos-based Bayesian inference of k-profile parameterization in a general circulation model of the tropical Pacific. Mon Weather Rev. doi: 10.1175/MWR-D-15-0394.1
  73. Tagade PM, Choia HL (2014) A generalized polynomial chaos-based method for efficient Bayesian calibration of uncertain computational models. Inverse Probl Sci Eng 22(4):602–624CrossRefGoogle Scholar
  74. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SiamGoogle Scholar
  75. Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble square root filters. Mon Weather Rev 131(7):1485–1490CrossRefGoogle Scholar
  76. Triantafyllou G, Hoteit I, Petihakis G (2003) A singular evolutive interpolated Kalman filter for efficient data assimilation in a 3-D complex physical–biogeochemical model of the Cretan Sea. J Mar Syst 40:213–231CrossRefGoogle Scholar
  77. van Leeuwen PJ (2009) Particle filtering in geophysical systems. Mon Weather Rev 137(12):4089–4114CrossRefGoogle Scholar
  78. Westerink JJ, Luettich RA, Feyen JC, Atkinson JH, Dawson C, Roberts HJ, Powell MD, Dunion JP, Kubatko EJ, Pourtaheri H (2008) A basin-to channel-scale unstructured grid hurricane storm surge model applied to Southern Louisiana. Mon Weather Rev 136(3):833–864CrossRefGoogle Scholar
  79. Yanagi T (1999) Coastal oceanography, vol 1. SpringerGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Adil Siripatana
    • 1
  • Talea Mayo
    • 2
  • Ihab Sraj
    • 1
  • Omar Knio
    • 1
  • Clint Dawson
    • 3
  • Olivier Le Maitre
    • 4
  • Ibrahim Hoteit
    • 1
    Email author
  1. 1.King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  2. 2.Princeton UniversityPrincetonUSA
  3. 3.University of Texas at AustinAustinUSA
  4. 4.Laboratoire d’Informatique pour la Mecanique et les Sciences de l’IngénieurParisFrance

Personalised recommendations