Skip to main content
Log in

A 4D variational assimilation scheme with partition method for nearshore wave models

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This paper summarizes the development steps of a 4D variational assimilation scheme for nearshore wave models. A partition method is applied for adjusting both wave boundary conditions and wind fields. Nonstationary conditions are assimilated by providing defined correlations of model inputs in time. The scheme is implemented into the SWAN model. Twin experiments covering both stationary and nonstationary wave conditions are carried out to assess the adequacy of the proposed scheme. Stationary experiments are carried out considering separately windsea, swells, and mixed sea. Cost functions decline to less than 5% and RMS spectrum errors are reduced to less than 10%. The nonstationary experiment covers 1 day simulation under mixed wave conditions with assimilation windows of 3 h. RMS spectrum errors are reduced to less than 10% after 30 iterations in most assimilation windows. The results show that for spacially uniform model inputs, model accuracy is improved notably by the assimilation scheme throughout the computational domain. It is found that under wave conditions in which observed spectra can be well classified, the assimilation scheme is able to improve model results significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Bauer E, Hasselmann S, Hasselmann K, Graber HC (1992) Validation and assimilation of seasat altimeter wave heights using the wam wave model. J Geophys Res Oceans 97(C8):12671–12682

    Article  Google Scholar 

  • Bennett A, McIntosh P (1982) Open ocean modeling as an inverse problem: tidal theory. J Phys Oceanogr 12(10):1004–1018

    Article  Google Scholar 

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res 104(C4):7649

    Article  Google Scholar 

  • De las Heras MM, Janssen PAEM (1992) Data assimilation with a coupled wind-wave model. J Geophys Res 97(C12):20261–20270

    Article  Google Scholar 

  • De Las Heras MM, Burgers G, Janssen PAEM (1994) Variational wave data assimilation in a third-generation wave model. J Atmos Ocean Technol 11(5):1350–1369

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford Paul, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorolog Soc 137(656):553–597

  • Emmanouil G, Galanis G, Kallos G (2010) A new methodology for using buoy measurements in sea wave data assimilation. Ocean Dyn 60(5):1205–1218

    Article  Google Scholar 

  • Emmanouil G, Galanis G, Kallos G (2012) Combination of statistical kalman filters and data assimilation for improving ocean waves analysis and forecasting. Ocean Model 59:11–23

    Article  Google Scholar 

  • Esteva DC (1988) Evaluation of preliminary experiments assimilating seasat significant wave heights into a spectral wave model. J Geophys Res 93(C11):14099–14105

    Article  Google Scholar 

  • Günther H, Hasselmann S, Janssen PA (1992) The WAM model cycle 4

  • Hasselmann K (1963) On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. J Fluid Mech 15(03):385

    Article  Google Scholar 

  • Hasselmann K, Barnett TP, Bouws E, Carlson H, Cartwright DE, Enke K, Ewing JA, Gienapp H, Hasselmann DE, Kruseman P, Meerburg A, Muller P, Olbers DJ, Richter K, Sell W, Walden H (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergnzungsheft zur Deutschen Hydrographischen Zeitschrift Reihe A(8)(8 0):95

    Google Scholar 

  • Hasselmann S, Lionello P, Hasselmann K (1997) An optimal interpolation of spectral wave data. J Geophys Res 102(C7):15,823–15,836

    Article  Google Scholar 

  • Hersbach H (1998) Application of the adjoint of the WAM model to inverse wave modeling. J Geophys Res 103:10469–10487

    Article  Google Scholar 

  • Janssen PA (1991) Quasi-linear theory of wind-wave generation applied to wave forecasting. J Phys Oceanogr 21(11):1631–1642

    Article  Google Scholar 

  • Komen G, Hasselmann K, Hasselmann K (1984) On the existence of a fully developed wind-sea spectrum. J Phys Oceanogr 14(8):1271–1285

    Article  Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen P (1994) Dynamics and modelling of ocean waves. Cambridge University Press

  • Lahoz W, Khattatov B, Menard R (2010) Data assimilation: making sense of observations. Springer Science & Business Media

  • Lionello P, Günther H, Janssen PA (1992) Assimilation of altimeter data in a global third-generation wave model. J Geophys Res Oceans 97(C9):14453–14474

    Article  Google Scholar 

  • Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G, Wergen W, Baumgardner J (2002) The operational global icosahedral-hexagonal gridpoint model gme: description and high-resolution tests. Mon Weather Rev 130(2):319–338

    Article  Google Scholar 

  • Orzech MD, Veeramony J, Ngodock H (2013) A variational assimilation system for nearshore wave modeling. J Atmos Ocean Technol 30(5):953–970

    Article  Google Scholar 

  • Panteleev G, Yaremchuk M, Rogers WE (2015) Adjoint-free variational data assimilation into a regional wave model. J Atmos Ocean Technol 32(7):1386–1399

    Article  Google Scholar 

  • Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of sa kitaigorodskii. J Geophys Res 69(24):5181–5190

    Article  Google Scholar 

  • Polak E (1971) Computational methods in optimization academic. New York

  • Portilla J (2009) Buoy data assimilation in nearshore wave modeling. PhD thesis Ph D dissertation, KU Leuven, Belgium

  • Siddons LA, Wyatt LR, Wolf J (2009) Assimilation of HF radar data into the SWAN wave model. J Mar Syst 77(3):312–324

    Article  Google Scholar 

  • Snyder R, Dobson F, Elliott J, Long R (1981) Array measurements of atmospheric pressure fluctuations above surface gravity waves. J Fluid Mech 102:1–59

    Article  Google Scholar 

  • Team S et al (2010) Swan scientific and technical documentation, swan cycle iii version 40.81. Delft University of Technology

  • Veeramony J, Walker D, Hsu L (2010) A variational data assimilation system for nearshore applications of SWAN. Ocean Model 35(3):206–214

    Article  Google Scholar 

  • Voorrips AC, Makin VK, Hasselmann S (1997) Assimilation of wave spectra from pitch-and-roll buoys in a North Sea wave model. J Geophys Res 102(C3):5829

    Article  Google Scholar 

  • Wahle K, Staneva J, Guenther H (2015) Data assimilation of ocean wind waves using neural networks: a case study for the German Bight. Ocean Model 96:117–125

    Article  Google Scholar 

  • Walker DT (2006) Assimilation of sar imagery in a nearshore spectral wave model. Technical report

  • Waters J, Wyatt LR, Wolf J, Hines A (2013) Data assimilation of partitioned HF radar wave data into Wavewatch III. Ocean Model 72:17–31

    Article  Google Scholar 

  • Wu J (1982) Wind-stress coefficients over sea surface from breeze to hurricane. J Geophys Res Oceans 87(C12):9704–9706

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from China Scholarship Council. Also, we are grateful to SWAN group of Delft University of Technology, who kindly provides the open source of the SWAN model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingyang Song.

Additional information

Responsible Editor: Bruno Castelle

Appendices

Appendix A: Source terms in the adjoint and the gradient

S w including three terms: wind growth, whitecapping dissipation, and bottom friction dissipation. It reads:

$$ S_{w}=S_{wg}+S_{dw}+S_{df} $$
(26)

where S w g is the wind growth, S d w is the whitecapping dissipation and S d f is the bottom friction dissipation. The wind growth term S w g applied in this study is based on Snyder et al. (1981) and Komen et al. (1984). It reads:

$$ S_{wg}=0.25\rho_{aw}(\frac{28U_{*}\cos(\theta-\theta_{w})}{2\pi f/k}-1)2\pi fE(f,\theta) $$
(27)

where ρ a w is a ratio between the density of air and the density of water, 𝜃 w is the direction of wind vector, k is the wave number and U is a friction velocity. U reads:

$$\begin{array}{@{}rcl@{}} U_{*}^{2} &=& C_{D} U_{10}^{2} \\ C_{D} &=& \left\{\begin{array}{ll} 1.2875\times 10^{-3} & U_{10} < 7.5~\mathrm{m/s} \\ (0.8+0.065U_{10}) 10^{-3} & U_{10}\geq 7.5~\mathrm{m/s} \end{array}\right. \end{array} $$
(28)

where U 10 is the wind speed at 10 m elevation and C D is the drag coefficient from Wu (1982). The expression of white capping dissipation is Janssen (1991) and Günther et al. (1992):

$$\begin{array}{@{}rcl@{}} S_{dw} &=& F_{w}(\bar{f},\bar{k},E_{t}) E(f,\theta) \\ F_{w}&=&-\frac{C_{ds}}{\bar{s}_{pm}^{p}} 2\pi \bar{f} \bar{k}^{p}E_{t}^{p/2} ((1-\delta)\frac{k}{\bar{k}}+\delta(\frac{k}{\bar{k}})^{2}) \end{array} $$
(29)

where \(\bar {f}\) is a mean frequency, \(\bar {k}\) is a mean wave number, E t is the total wave energy and \(\bar {s}_{pm}\) is the wave steepness in Pierson-Moskowitz spectrum (Pierson and Moskowitz 1964). C d s , δ and p are tunable coefficients. Following Komen et al. (1984), the default number of C d s in the SWAN model equals to 2.36 × 105, p equals to 2 and δ equals to 1. The bottom friction dissipation term S d f reads:

$$ S_{df}= -C_{b}\frac{(2\pi f)^{2}}{g^{2}{\sinh}^{2} (kd)}E(f,\theta) $$
(30)

where C b is the bottom friction coefficient set to be 0.067 m2/s3. Based on Eqs. 26 to 30, derivatives of S w with respect to E in Eq. 16 are:

$$ \frac{\partial S_{wg}}{\partial E}=0.25\rho_{aw}(\frac{28U_{*}\cos(\theta-\theta_{w})}{2\pi f/k}-1)2\pi f $$
(31)
$$ \frac{\partial S_{df}}{\partial E}= -C_{b}\frac{(2\pi f)^{2}}{g^{2}{\sinh}^{2} (kd)} $$
(32)
$$\begin{array}{@{}rcl@{}} \frac{\partial S_{dw}}{\partial E}&=&\frac{\partial F_{w}}{\partial E}E +F_{w}\\ \frac{\partial F_{w}}{\partial E}&=& \frac{\partial F_{w}}{\partial E_{t}}\frac{\partial E_{t}}{\partial E}+\frac{\partial F_{w}}{\partial \bar{f}}\frac{\partial \bar{f}}{\partial E}+\frac{\partial F_{w}}{\partial \bar{k}}\frac{\partial \bar{k}}{\partial E} \end{array} $$
(33)

\(\frac {\partial E_{t}}{\partial E}\), \(\frac {\partial \bar {f}}{\partial E}\) and \(\frac {\partial \bar {k}}{\partial E}\) in Eq. 33 can be calculated as De Las Heras et al. (1994):

$$\begin{array}{@{}rcl@{}} \frac{\partial E_{t}}{\partial E}&=& 1\\ \frac{\partial \bar{f}}{\partial E}&=& \frac{\bar{f}}{E_{t}}(1-\frac{\bar{f}}{f})\\ \frac{\partial \bar{k}}{\partial E}&=& \frac{2\bar{k}}{E_{t}}[1-(\frac{\bar{k}}{k})] \end{array} $$
(34)

Hence, the source terms \(\frac {\partial S_{w}}{\partial E}\) in Eq. 16 can be calculated explicitly with Eqs. 26 to 34. The source term \(\frac {\partial S_{s}}{\partial E}\) in Eq. 17 can also be obtained by Eq. 32 since the friction bottom dissipation is the only term in S s .

The wind components u and v only explicitly relate to S w g . Therefore, \(\frac {\partial S_{w}}{\partial u}\) and \(\frac {\partial S_{w}}{\partial u}\) in Eq. 18 can be obtained as

$$\begin{array}{@{}rcl@{}} \frac{\partial S_{w}}{\partial u}&=&\frac{\partial S_{wg}}{\partial u}=\frac{\partial S_{wg}}{\partial U_{*}}\frac{\partial U_{*}}{\partial u} +\frac{\partial S_{wg}}{\partial \theta_{w}}\frac{\partial \theta_{w}}{\partial u}\\ \frac{\partial S_{w}}{\partial v}&=&\frac{\partial S_{wg}}{\partial v}=\frac{\partial S_{wg}}{\partial U_{*}}\frac{\partial U_{*}}{\partial v} +\frac{\partial S_{wg}}{\partial \theta_{w}}\frac{\partial \theta_{w}}{\partial v} \end{array} $$
(35)

where \(\frac {\partial S_{wg}}{\partial U_{*}}\) and \(\frac {\partial S_{wg}}{\partial \theta _{w}}\) can be expressed as

$$\begin{array}{@{}rcl@{}} \frac{\partial S_{wg}}{\partial U_{*}}&=&0.25\rho_{aw}(28k\cos(\theta-\theta_{w})) E(f,\theta)\\ \frac{\partial S_{wg}}{\partial \theta_{w}}&=&0.25\rho_{aw}(28kU_{*}{\sin}(\theta-\theta_{w}))E(f,\theta) \end{array} $$
(36)

From Eq. 28, obviously, U is related to the wind speed. So we have

$$\begin{array}{@{}rcl@{}} \frac{\partial U_{*}}{\partial u} &=& \frac{\partial U_{*}}{\partial U_{10}} \frac{\partial U_{10}}{\partial u}\\ \frac{\partial U_{*}}{\partial v} &=& \frac{\partial U_{*}}{\partial U_{10}} \frac{\partial U_{10}}{\partial v} \end{array} $$
(37)

That means the only required information for Eq. 35 is the conversion from the wind speed U 10 and the wind direction 𝜃 w to the wind components u and v which can be easily obtained as:

$$\begin{array}{@{}rcl@{}} \frac{\partial U_{10}}{\partial u} &=& \frac{u }{ U_{10}} , \frac{\partial U_{10}}{\partial v} = \frac{v }{ U_{10}} \\ \frac{\partial \theta_{w}}{\partial u} &=& \left\{\begin{array}{ll} \frac{u^{2}-U_{10}^{2} }{ U_{10}^{3}{\sin}(\theta_{w})} & {\sin}(\theta_{w}) \neq 0\\ \frac{-uv}{ U_{10}^{3}\cos(\theta_{w})} &{\sin}(\theta_{w}) = 0 \end{array}\right.\\ \frac{\partial \theta_{w}}{\partial v} &=& \left\{\begin{array}{ll} \frac{U_{10}^{2}-v^{2} }{ U_{10}^{3}\cos(\theta_{w})} & \cos(\theta_{w}) \neq 0\\ \frac{uv}{ U_{10}^{3}{\sin}(\theta_{w})} &\cos(\theta_{w}) = 0 \end{array}\right. \end{array} $$
(38)

Hence, based on Eqs. 35 to 38, the gradient calculation for the wind components in Eq. 18 can be processed.

The wind growth expression used in the Cycle 4 of the WAM model is also optional (Komen et al. 1994). In that case, the calculation of the deviation is much more complicated. The details can be found in De Las Heras et al. (1994).

Appendix B: Discrete forms of the adjoints

Generally, the discrete schemes applied in the adjoints of Eqs. 16 and 17 are based on the SWAN forward model which is a implicit scheme but being solved explicitly (Team et al. 2010). The discrete forms of Eqs. 16 and 17 are:

$$\begin{array}{@{}rcl@{}} &&\frac{1}{\Delta t}((\lambda_{w})_{i,j,l,m}^{n-1}-(\lambda_{w})_{i,j,l,m}^{n})+\frac{1}{\Delta x}C_{x}((\lambda_{w})_{i-1/2,j,l,m}^{n-1}\\ &&-(\lambda_{w})_{i+1/2,j,l,m}^{n-1}) +C_{y}((\lambda_{w})_{i,j-1/2,l,m}^{n-1} -(\lambda_{w})_{i,j+1/2,l,m}^{n-1})\\ &&+\frac{1}{2\pi{\Delta} f}C_{f}((\lambda_{w})_{i,j,l-1/2,m}^{n-1}-(\lambda_{w})_{i,j,l+1/2,m}^{n-1})\\ &&+\frac{1}{\Delta \theta}C_{\theta}((\lambda_{w})_{i,j,l,m-1/2}^{n-1}- (\lambda_{w})_{i,j+1/2,l,m+1/2}^{n-1})\\ &=& (\lambda_{w})_{i,j,l,m}^{n}(S^{E}_{wg})^{n}_{i,j,l,m}+ (\lambda_{w})_{i,j,l,m}^{n}(S^{E}_{dw})^{n}_{i,j,l,m}\\ &&+(\lambda_{w})_{i,j,l,m}^{n}(S^{E}_{df})^{n}_{i,j,l,m} -(S^{N}_{ob1})^{n}_{i,j,l,m} \end{array} $$
(39)
$$\begin{array}{@{}rcl@{}} &&\frac{1}{\Delta t}((\lambda_{s})_{i,j,l,m}^{n-1}-(\lambda_{s})_{i,j,l,m}^{n})+\frac{1}{\Delta x}C_{x}((\lambda_{s})_{i-1/2,j,l,m}^{n-1}\\ &&-(\lambda_{s})_{i+1/2,j,l,m}^{n-1}) \!+C_{y}((\lambda_{s})_{i,j-1/2,l,m}^{n-1}\!- (\lambda_{s})_{i,j+1/2,l,m}^{n-1}) \\ &&+\frac{1}{2\pi{\Delta} f}C_{f}((\lambda_{s})_{i,j,l-1/2,m}^{n-1}-(\lambda_{s})_{i,j,l+1/2,m}^{n-1})\\ &&+\frac{1}{\Delta \theta}C_{\theta}((\lambda_{s})_{i,j,l,m-1/2}^{n-1} -(\lambda_{s})_{i,j+1/2,l,m+1/2}^{n-1}) \\ &=& (\lambda_{s})_{i,j,l,m}^{n}(S^{E}_{df})^{n}_{i,j,l,m}-(S^{N}_{ob2})^{n}_{i,j,l,m} \end{array} $$
(40)

Where \(S^{E}_{wg}\), \(S^{E}_{dw}\), \(S^{E}_{df}\), \(S^{N}_{ob1}\) and \(S^{N}_{ob2}\) represent the discrete forms of \(\frac {\partial S_{wg}}{\partial E}\), \(\frac {\partial S_{dw}}{\partial E}\), \(\frac {\partial S_{df}}{\partial E}\), \(\frac {\partial S_{ob1}}{\partial N}\) and \(\frac {\partial S_{ob1}}{\partial N}\) respectively. Their expressions read:

$$\begin{array}{@{}rcl@{}} (S^{E}_{wg})^{n}_{i,j,l,m}&=&(\frac{\partial S_{wg}}{\partial E})^{n}_{i,j,l,m}\\ (S^{E}_{dw})^{n}_{i,j,l,m}&=& (\frac{\partial S_{dw}}{\partial E})^{n}_{i,j,l,m}\\ (S^{E}_{df})^{n}_{i,j,l,m}&=& (\frac{\partial S_{df}}{\partial E})^{n}_{i,j,l,m}\\ (S^{N}_{ob1})^{n}_{i,j,l,m}&=&\frac{4\pi f W_{1}}{M_{obs}} \sum\limits_{a=1}^{M_{obs}}(hE-\hat{h}\hat{E_{a}})\\ &&\delta^{i_{a}}_{i}\delta^{j_{a}}_{j}\delta^{l_{a}}_{l}\delta^{m_{a}}_{m}\delta^{n_{a}}_{n}|^{n}_{i,j,k,m}\\ (S^{N}_{ob2})^{n}_{i,j,l,m}&=&\frac{4\pi f W_{1}}{M_{obs}} \sum\limits_{a=1}^{M_{obs}}((1-h)E-(1-\hat{h})\hat{E_{a}})\\ &&\delta^{i_{a}}_{i}\delta^{j_{a}}_{j}\delta^{l_{a}}_{l}\delta^{m_{a}}_{m}\delta^{n_{a}}_{n}|^{n}_{i,j,k,m} \end{array} $$
(41)

First order upwind schemes are employed for the discretization in both geographical and spectral space for the forward model (Team et al. 2010). But the adjoint model is calculated backward in time so that the upwind scheme must turn to the “downwind” scheme. Therefore, the schemes become:

$$\begin{array}{@{}rcl@{}} \text{If} \hspace{0.1cm} (C_{f})_{i,j,l,m} &>& 0 \hspace{0.1cm} \text{then}\\ \lambda_{i,j,l+1/2,m}&=&(1-0.5\mu) \lambda_{i,j,l+1,m}+ 0.5\mu\lambda_{i,j,l,m} \\ \lambda_{i,j,l-1/2,m}&=&(1-0.5\mu) \lambda_{i,j,l,m}+ 0.5\mu\lambda_{i,j,l-1,m} \\ \text{If} \hspace{0.1cm} (C_{f})_{i,j,l,m} &<& 0 \hspace{0.1cm} \text{then}\\ \lambda_{i,j,l+1/2,m}&=&(1-0.5\mu) \lambda_{i,j,l,m}+ 0.5\mu\lambda_{i,j,l+1,m} \\ \lambda_{i,j,l-1/2,m}&=&(1-0.5\mu) \lambda_{i,j,l-1,m}+ 0.5\mu\lambda_{i,j,l,m} \\ \text{If} \hspace{0.1cm} (C_{\theta})_{i,j,l,m} &>& 0 \hspace{0.1cm} \text{then}\\ \lambda_{i,j,l,m+1/2}&=&(1-0.5\nu) \lambda_{i,j,l,m+1}+ 0.5\nu\lambda_{i,j,l,m} \\ \lambda_{i,j,l,m-1/2}&=&(1-0.5\nu) \lambda_{i,j,l,m}+ 0.5\nu\lambda_{i,j,l,m-1} \\ \text{If} \hspace{0.1cm} (C_{\theta})_{i,j,l,m} &<& 0 \hspace{0.1cm} \text{then}\\ \lambda_{i,j,l,m+1/2}&=&(1-0.5\nu) \lambda_{i,j,l,m}+ 0.5\nu\lambda_{i,j,l,m+1} \\ \lambda_{i,j,l,m-1/2}&=&(1-0.5\nu) \lambda_{i,j,l,m-1}+ 0.5\nu\lambda_{i,j,l,m} \end{array} $$
(42)
$$\begin{array}{@{}rcl@{}} \text{If} \hspace{0.1cm} (C_{x})_{i,j,l,m} > 0 \hspace{0.1cm} \text{then} \hspace{0.1cm} \lambda_{i+1/2,j,l,m}&=&\lambda_{i+1,j,l,m} \\ \lambda_{i-1/2,j,l,m}&=&\lambda_{i,j,l,m} \\ \text{If} \hspace{0.1cm} (C_{x})_{i,j,l,m} < 0 \hspace{0.1cm} \text{then} \hspace{0.1cm} \lambda_{i+1/2,j,l,m}&=&\lambda_{i,j,l,m} \\ \lambda_{i-1/2,j,l,m}&=&\lambda_{i-1,j,l,m} \\ \text{If} \hspace{0.1cm} (C_{y})_{i,j,l,m} > 0 \hspace{0.1cm} \text{then} \hspace{0.1cm} \lambda_{i,j+1/2,l,m}&=&\lambda_{i,j+1,l,m} \\ \lambda_{i,j-1/2,l,m}&=&\lambda_{i,j,l,m} \\ \text{If} \hspace{0.1cm} (C_{y})_{i,j,l,m} < 0 \hspace{0.1cm} \text{then}\hspace{0.1cm} \lambda_{i,j+1/2,l,m}&=&\lambda_{i,j,l,m} \\ \lambda_{i,j-1/2,l,m}&=&\lambda_{i,j-1,l,m} \\ \end{array} $$
(43)

where μ = 0 and ν = 0 are set for the downwind scheme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Q., Mayerle, R. A 4D variational assimilation scheme with partition method for nearshore wave models. Ocean Dynamics 67, 989–1002 (2017). https://doi.org/10.1007/s10236-017-1069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1069-9

Keywords

Navigation