Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea

Abstract

Forecasting the state of large marine ecosystems is important for many economic and public health applications. However, advanced three-dimensional (3D) ecosystem models, such as the European Regional Seas Ecosystem Model (ERSEM), are computationally expensive, especially when implemented within an ensemble data assimilation system requiring several parallel integrations. As an alternative to 3D ecological forecasting systems, we propose to implement a set of regional one-dimensional (1D) water-column ecological models that run at a fraction of the computational cost. The 1D model domains are determined using a Gaussian mixture model (GMM)-based clustering method and satellite chlorophyll-a (Chl-a) data. Regionally averaged Chl-a data is assimilated into the 1D models using the singular evolutive interpolated Kalman (SEIK) filter. To laterally exchange information between subregions and improve the forecasting skills, we introduce a new correction step to the assimilation scheme, in which we assimilate a statistical forecast of future Chl-a observations based on information from neighbouring regions. We apply this approach to the Red Sea and show that the assimilative 1D ecological models can forecast surface Chl-a concentration with high accuracy. The statistical assimilation step further improves the forecasting skill by as much as 50%. This general approach of clustering large marine areas and running several interacting 1D ecological models is very flexible. It allows many combinations of clustering, filtering and regression technics to be used and can be applied to build efficient forecasting systems in other large marine ecosystems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alvera-Azcárate A, Barth A, Sirjacobs D, Beckers JM (2009) Enhancing temporal correlations in EOF expansions for the reconstruction of missing data using DINEOF. Ocean Sci 5:475–485

    Article  Google Scholar 

  2. Anderson TR (2005) Plankton functional type modelling: running before we can walk? J Plankton Res 27:1073–1081. doi:10.1093/plankt/fbi076

    Google Scholar 

  3. Baretta JW, Ebenhöh W, Ruardij P (1995) The European regional seas ecosystem model, a complex marine ecosystem model. Neth J Sea Res 33:233–246. doi:10.1016/0077-7579(95)90047-0

    Article  Google Scholar 

  4. Baretta-Bekker JG, Baretta JW, Ebenhöh W (1997) Microbial dynamics in the marine ecosystem model ERSEM II with decoupled carbon assimilation and nutrient uptake. J Sea Res 38:195–211. doi:10.1016/S1385-1101(97)00052-X

    Article  Google Scholar 

  5. Beckers JM, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic datasets. J Atmos Ocean Tech 20:1839–1856. doi:10.1175/1520-0426(2003)020<1839:Ecadff>2.0.Co;2

    Article  Google Scholar 

  6. Blackford JC, Burkill PH (2002) Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonal forcing: the application of a generic model. J Marine Syst 36:239–267. doi:10.1016/S0924-7963(02)00182-3

    Article  Google Scholar 

  7. Blackford JC, Allen JI, Gilbert FJ (2004) Ecosystem dynamics at six contrasting sites: a generic modelling study. J Marine Syst 52:191–215. doi:10.1016/j.jmarsys.2004.02.004

    Article  Google Scholar 

  8. Brewin RJW, Raitsos DE, Pradhan Y, Hoteit I (2013) Comparison of chlorophyll in the Red Sea derived from MODIS-Aqua and in vivo fluorescence. Remote Sens Environ 136:218–224. doi:10.1016/j.rse.2013.04.018

    Article  Google Scholar 

  9. Brewin RJW, Raitsos DE, Dall’Olmo G et al (2015) Regional ocean-colour chlorophyll algorithms for the Red Sea. Remote Sens Environ 165:64–85. doi:10.1016/j.rse.2015.04.024

    Article  Google Scholar 

  10. Ciavatta S, Torres R, Saux-Picart S, Allen JI (2011) Can ocean color assimilation improve biogeochemical hindcasts in shelf seas? J Geophys Res-Oceans 116:C12043. doi:10.1029/2011JC007219

    Article  Google Scholar 

  11. Ciavatta S, Torres R, Martinez-Vicente V et al (2014) Assimilation of remotely-sensed optical properties to improve marine biogeochemistry modelling. Prog Oceanogr 127:74–95. doi:10.1016/J.Pocean.2014.06.002

    Article  Google Scholar 

  12. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B Met 39:1–38

    Google Scholar 

  13. Dreano D, Mallick B, Hoteit I (2015) Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space--time covariance model and a Kalman filter. Spat Stat 13:1–20. doi:10.1016/j.spasta.2015.04.002

    Article  Google Scholar 

  14. Dreano D, Raitsos DE, Gitting J, et al (2016) The Gulf of Aden intermediate water intrusion regulates the southern Red Sea summer phytoplankton blooms.

  15. Edwards CA, Moore AM, Hoteit I, Cornuelle BD (2015) Regional ocean data assimilation. Annu Rev Mar Sci 7:21–42. doi:10.1146/annurev-marine-010814-015821

    Article  Google Scholar 

  16. Fennel WW, Neumann TT (2004) Introduction to the modelling of marine ecosystems. Elsevier, Amsterdam Boston

    Google Scholar 

  17. Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631. doi:10.1198/016214502760047131

    Article  Google Scholar 

  18. Garcia HE, Locarnini RA, Boyer TP et al (2014) World Ocean Atlas 2013, volume 4: dissolved inorganic nutrients (phosphate, nitrate, silicate). NOAA Atlas NESDIS

  19. Gharamti ME, Samuelsen A, Bertino L et al (2017) Online tuning of ocean biogeochemical model parameters using ensemble estimation techniques: application to a one-dimensional model in the North Atlantic. J Mar Sys 168:1–16. doi:10.1016/j.jmarsys.2016.12.003

  20. Hoteit I, Pham DT (2004) An adaptively reduced-order extended Kalman filter for data assimilation in the tropical Pacific. J Mar Sys 45:173–188

  21. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J Marine Syst 36:101–127. doi:10.1016/S0924-7963(02)00129-X

    Article  Google Scholar 

  22. Hoteit I, Triantafyllou G, Petihakis G (2005) Efficient data assimilation into a complex, 3-D physical-biogeochemical model using partially-local Kalman filters. Ann Geophys-Germany 23:3171–3185

    Article  Google Scholar 

  23. Hoteit I, Pham DT, Gharamti ME, Luo X (2015) Mitigating observation perturbation sampling errors in the stochastic EnKF. Mon Weather Rev 143:2918–2936. doi:10.1175/MWR-D-14-00088.1

    Article  Google Scholar 

  24. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning: with applications in R. Springer, New York

    Book  Google Scholar 

  25. Korres G, Triantafyllou G, Petihakis G et al (2012) A data assimilation tool for the Pagasitikos Gulf ecosystem dynamics: methods and benefits. J Marine Syst 94:S102–S117. doi:10.1016/J. Jmarsys.2011.11.004

    Article  Google Scholar 

  26. Kürten B, Al-Aidaroos AM, Struck U et al (2014) Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. J Sea Res 85:379–394. doi:10.1016/j.seares.2013.07.008

    Article  Google Scholar 

  27. Latour RJ, Brush MJ, Bonzek CF (2003) Toward ecosystem-based fisheries management. Fisheries 28:10–22. doi:10.1577/1548-8446(2003)28[10:TEFM]2.0.CO;2

    Article  Google Scholar 

  28. Miles TN, He R (2010) Temporal and spatial variability of Chl-a and SST on the South Atlantic Bight: revisiting with cloud-free reconstructions of MODIS satellite imagery. Cont Shelf Res 30:1951–1962. doi:10.1016/j.csr.2010.08.016

    Article  Google Scholar 

  29. Nanninga GB, Saenz-Agudelo P, Manica A, Berumen ML (2014) Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea. Mol Ecol 23:591–602. doi:10.1111/mec.12623

    Article  Google Scholar 

  30. Patsch J, Radach G (1997) Long-term simulation of the eutrophication of the North Sea: temporal development of nutrients, chlorophyll and primary production in comparison to observations. J Sea Res 38:275–310. doi:10.1016/S1385-1101(97)00051-8

    Article  Google Scholar 

  31. Petihakis G, Triantafyllou G, Allen IJ et al (2002) Modelling the spatial and temporal variability of the Cretan Sea ecosystem. J Marine Syst 36:173–196. doi:10.1016/S0924-7963(02)00186-0

    Article  Google Scholar 

  32. Petihakis G, Triantafyllou G, Tsiaras K et al (2009) Eastern Mediterranean biogeochemical flux model – simulations of the pelagic ecosystem. Ocean Sci 5:29–46

    Article  Google Scholar 

  33. Pettersson LH, Pozdn͡iakov DVDV (2013) Monitoring of harmful algal blooms. Springer, published in association with Praxis Publishing, Chichester

    Book  Google Scholar 

  34. Pham DT (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon Weather Rev 129:1194–1207. doi:10.1175/1520-0493(2001)129<1194:SMFSDA>2.0.CO;2

    Article  Google Scholar 

  35. Racault M-F, Raitsos DE, Berumen ML et al (2015) Phytoplankton phenology indices in coral reef ecosystems: application to ocean-color observations in the Red Sea. Remote Sens Environ 160:222–234. doi:10.1016/j.rse.2015.01.019

    Article  Google Scholar 

  36. Raitsos DE, Pradhan Y, Brewin RJW et al (2013) Remote sensing the phytoplankton seasonal succession of the Red Sea. PLoS One 8:e64909. doi:10.1371/journal.pone.0064909

    Article  Google Scholar 

  37. Richlen ML, Morton SL, Jamali EA et al (2010) The catastrophic 2008-2009 red tide in the Arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163–172. doi:10.1016/J.Hal.2009.08.013

    Article  Google Scholar 

  38. Sofianos SS, Johns WE (2007) Observations of the summer Red Sea circulation. J Geophys Res-Oceans. doi:10.1029/2006jc003886

  39. Triantafyllou G, Hoteit I, Petihakis G, Dounas K (2003) An interpolated Kalman filter to assimilate in-situ data into a complex 3-D model of the Cretan sea ecosystem. J Mar Syst 40-41:213–231

    Article  Google Scholar 

  40. Triantafyllou G, Korres G, Hoteit I, Petihakis G, Banks AC (2007) Assimilation of ocean colour data into a biochemical flux model of the Eastern Mediterranean Sea. Ocean Sci 3:397–410

    Article  Google Scholar 

  41. Triantafyllou G, Hoteit I, Luo X et al (2013) Assessing a robust ensemble-based Kalman filter for efficient ecosystem data assimilation of the Cretan Sea. J Marine Syst 125:90–100. doi:10.1016/J.Jmarsys.2012.12.006

    Article  Google Scholar 

  42. Triantafyllou G, Yao F, Petihakis G et al (2014) Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J Geophys Res-Oceans 119:1791–1811. doi:10.1002/2013jc009641

    Article  Google Scholar 

  43. Tsiaras KP, Petihakis G, Kourafalou VH, Triantafyllou G (2014) Impact of the river nutrient load variability on the North Aegean ecosystem functioning over the last decades. J Sea Res 86:97–109. doi:10.1016/j.seares.2013.11.007

    Article  Google Scholar 

  44. Weikert H (1987) Plankton and the pelagic environment. In: Head SM (ed) Edwards AJ. Red Sea. Pergamon Books, Key environments, pp 90–111

    Google Scholar 

  45. Yao F, Hoteit I, Pratt LJ et al (2014a) Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J Geophys Res-Oceans 119:2263–2289. doi:10.1002/2013jc009331

    Article  Google Scholar 

  46. Yao F, Hoteit I, Pratt LJ et al (2014b) Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J Geophys Res-Oceans 119:2238–2262. doi:10.1002/2013jc009004

    Article  Google Scholar 

  47. Zavatarelli M, Baretta JW, Baretta-Bekker JG, Pinardi N (2000) The dynamics of the Adriatic Sea ecosystem. An idealized model study. Deep-Sea Res Pt I 47:937–970. doi:10.1016/S0967-0637(99)00086-2

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia. This research made use of the resources of the supercomputing laboratory at KAUST. We thank the ESA Ocean Colour CCI Team for providing OC-CCI chlorophyll data.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Hoteit.

Additional information

This article is part of the Topical Collection on the 18th Joint Numerical Sea Modelling Group Conference, Oslo, Norway, 10–12 May 2016

Responsible Editor: Martin Verlaan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dreano, D., Tsiaras, K., Triantafyllou, G. et al. Efficient ensemble forecasting of marine ecology with clustered 1D models and statistical lateral exchange: application to the Red Sea. Ocean Dynamics 67, 935–947 (2017). https://doi.org/10.1007/s10236-017-1065-0

Download citation

Keywords

  • Data assimilation
  • Ensemble Kalman filter
  • SEIK
  • ERSEM
  • Marine ecosystem modelling
  • Red Sea
  • Clustering
  • Chlorophyll remote sensing