Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing

Abstract

We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Notes

  1. 1.

    In CPU time and not necessarily in real time as the ensemble members can be integrated in parallel.

References

  1. Aksoy A, Dowell DC, Snyder C (2009) A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-Scale Analyses. Mon Weather Rev 137:1805–1824. doi:10.1175/2008mwr2691.1

    Article  Google Scholar 

  2. Altaf MU, Butler T, Mayo T, Luo X, Dawson C, Heemink AW, Hoteit I (2014) A comparison of ensemble Kalman filters for storm surge assimilation. Mon Weather Rev 142:2899–2914. doi:10.1175/Mwr-D-13-00266.1

    Article  Google Scholar 

  3. Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129:2884–2903

    Article  Google Scholar 

  4. Anderson JL (2003) A local least squares framework for ensemble filtering. Mon Weather Rev 131:634–642. doi:10.1175/1520-0493(2003)131<0634:Allsff>2.0.Co;2

    Article  Google Scholar 

  5. Anderson JL, Collins N (2007) Scalable implementations of ensemble filter algorithms for data assimilation. J Atmos Ocean Technol 24:1452–1463. doi:10.1175/Jtech2049.1

    Article  Google Scholar 

  6. Anderson J, Hoar T, Raeder K, Liu H, Collins N, Torn R, Avellano A (2009) The data assimilation research testbed a community facility. B Am Meteorol Soc 90:1283–1296. doi:10.1175/2009bams2618.1

    Article  Google Scholar 

  7. Backeberg BC, Counillon F, Johannessen JA, Pujol MI (2014) Assimilating along-track SLA data using the EnOI in an eddy resolving model of the Agulhas system. Ocean Dyn 64:1121–1136. doi:10.1007/s10236-014-0717-6

    Article  Google Scholar 

  8. Chen CS et al (2014) Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea. J Geophys Res-Oceans 119:1445–1464

    Article  Google Scholar 

  9. Cipollini P et al (2010) The role of altimetry in coastal observing systems. Proceedings of OceanObs 9:181–191

    Google Scholar 

  10. Clifford M, Horton C, Schmitz J, Kantha LH (1997) An oceanographic nowcast/forecast system for the Red Sea. J Geophys Res-Oceans 102:25101–25122

    Article  Google Scholar 

  11. Ducet N, Le Traon PY, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J Geophys Res-Oceans 105:19477–19498. doi:10.1029/2000jc900063

    Article  Google Scholar 

  12. Edwards CA, Moore AM, Hoteit I, Cornuelle BD (2015) Regional ocean data assimilation. Annu Rev Mar Sci 7:21–42. doi:10.1146/annurev-marine-010814-015821

    Article  Google Scholar 

  13. Eshel G, Naik NH (1997) Climatological coastal jet collision, intermediate water formation, and the general circulation of the Red Sea. J Phys Oceanogr 27:1233–1257

    Article  Google Scholar 

  14. Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J Geophys Res-Oceans 99:10143–10162. doi:10.1029/94jc00572

    Article  Google Scholar 

  15. Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367. doi:10.1007/s10236-003-0036-9

    Article  Google Scholar 

  16. Evensen G (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn 54:539–560. doi:10.1007/s10236-004-0099-2

    Article  Google Scholar 

  17. Fu WW, She J, Zhuang SY (2011) Application of an ensemble optimal interpolation in a north/Baltic Sea model: assimilating temperature and salinity profiles. Ocean Model 40:227–245

    Article  Google Scholar 

  18. Furrer R, Bengtsson T (2007) Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J Multivar Anal 98:227–255. doi:10.1016/j.jmva.2006.08.003

    Article  Google Scholar 

  19. Gottwald GA (2014) Controlling balance in an ensemble Kalman filter. Nonlinear Process Geophys 21:417–426. doi:10.5194/npg-21-417-2014

    Article  Google Scholar 

  20. Hamill TM, Snyder C (2000) A hybrid ensemble Kalman filter—3D variational analysis scheme. Mon Weather Rev 128:2905–2919. doi:10.1175/1520-0493(2000)128<2905:Ahekfv>2.0.Co;2

    Article  Google Scholar 

  21. Hamill TM, Whitaker JS (2011) What constrains spread growth in forecasts initialized from ensemble Kalman filters? Mon Weather Rev 139:117–131. doi:10.1175/2010mwr3246.1

    Article  Google Scholar 

  22. Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790. doi:10.1175/1520-0493(2001)129<2776:Ddfobe>2.0.Co;2

    Article  Google Scholar 

  23. Hoteit I, Pham DT (2004) An adaptively reduced-order extended Kalman filter for data assimilation in the tropical Pacific. J Mar Syst 45:173–188

    Article  Google Scholar 

  24. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J Mar Syst 36:101–127. doi:10.1016/S0924-7963(02)00129-X

    Article  Google Scholar 

  25. Hoteit I et al (2013) A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dynam Atmos Oceans 63:1–23. doi:10.1016/j.dynatmoce.2013.03.002

    Article  Google Scholar 

  26. Hoteit I, Pham DT, Gharamti ME, Luo X (2015) Mitigating observation perturbation sampling errors in the stochastic EnKF. Mon Weather Rev 143:2918–2936. doi:10.1175/Mwr-D-14-00088.1

    Article  Google Scholar 

  27. Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev 126:796–811. doi:10.1175/1520-0493(1998)126<0796:Dauaek>2.0.Co;2

    Article  Google Scholar 

  28. Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137. doi:10.1175/1520-0493(2001)129<0123:Asekff>2.0.Co;2

    Article  Google Scholar 

  29. Houtekamer PL, Zhang F (2016) Review of the ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev. doi:10.1175/MWR-D-15-0440.1

  30. Johns WE, Sofianos SS (2012) Atmospherically forced exchange through the Bab el Mandeb Strait. J Phys Oceanogr 42:1143–1157

    Article  Google Scholar 

  31. Kohl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38:1913–1930

    Article  Google Scholar 

  32. Le Henaff M, Roblou L, Bouffard J (2011) Characterizing the Navidad current interannual variability using coastal altimetry. Ocean Dyn 61:425–437

    Article  Google Scholar 

  33. Ledimet FX, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations—theoretical aspects. Tellus A 38:97–110

    Article  Google Scholar 

  34. Luo XD, Hoteit I (2013) Covariance inflation in the ensemble Kalman filter: a residual nudging perspective and some implications. Mon Weather Rev 141:3360–3368. doi:10.1175/Mwr-D-13-00067.1

    Article  Google Scholar 

  35. Lyu GK, Wang H, Zhu J, Wang DK, Xie JP, Liu GM (2014) Assimilating the along-track sea level anomaly into the regional ocean modeling system using the ensemble optimal interpolation. Acta Oceanol Sin 33:72–82. doi:10.1007/s13131-014-0469-7

    Article  Google Scholar 

  36. Madsen KS, Hoyer JL, Fu WW, Donlon C (2015) Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea. J Geophys Res-Oceans 120:6405–6418. doi:10.1002/2015jc011070

    Article  Google Scholar 

  37. Mitchell HL, Houtekamer PL, Pellerin G (2002) Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon Weather Rev 130:2791–2808. doi:10.1175/1520-0493(2002)130<2791:Esbame>2.0.Co;2

    Article  Google Scholar 

  38. Murray SP, Johns W (1997) Direct observations of seasonal exchange through the Bab el Mandab Strait. Geophys Res Lett 24:2557–2560

    Article  Google Scholar 

  39. Nerger L, Hiller W, Schroter J (2005) PDAF—the parallel data assimilation framework: experiences with Kalman filtering use of high performance computing in meteorology:63–83 doi: 10.1142/9789812701831_0006

  40. Oke PR, Allen JS, Miller RN, Egbert GD, Kosro PM (2002) Assimilation of surface velocity data into a primitive equation coastal ocean model J Geophys Res-Oceans 107 doi:Artn 3122 10.1029/2000jc000511

  41. Oke PR, Sakov P, Corney SP (2007) Impacts of localisation in the EnKF and EnOI: experiments with a small model. Ocean Dyn 57:32–45. doi:10.1007/s10236-006-0088-8

    Article  Google Scholar 

  42. Raeder K, Anderson JL, Collins N, Hoar TJ, Kay JE, Lauritzen PH, Pincus R (2012) DART/CAM: an ensemble data assimilation system for CESM atmospheric models. J Clim 25:6304–6317. doi:10.1175/Jcli-D-11-00395.1

    Article  Google Scholar 

  43. Reichle RH, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130:103–114. doi:10.1175/1520-0493(2002)130<0103:Hdawte>2.0.Co;2

    Article  Google Scholar 

  44. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007jcli1824.1

    Article  Google Scholar 

  45. Sakov P, Bertino L (2011) Relation between two common localisation methods for the EnKF. Comput Geosci 15:225–237

    Article  Google Scholar 

  46. Sakov P, Sandery PA (2015) Comparison of EnOI and EnKF regional ocean reanalysis systems. Ocean Model 89:45–60. doi:10.1016/j.ocemod.2015.02.003

    Article  Google Scholar 

  47. Scharroo R, Leuliette EW, Lillibridge JL, Byrne D, Naeije MC, Mitchum GT (2013) RADS: Consistent multi-mission products. In, 2013

  48. Siddall M, Smeed DA, Matthiesen S, Rohling EJ (2002) Modelling the seasonal cycle of the exchange flow in Bab el Mandab (Red Sea). Deep-Sea Res Pt I 49:1551–1569

    Article  Google Scholar 

  49. Sofianos SS, Johns WE (2002) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean J Geophys Res-Oceans 107

  50. Sofianos SS, Johns WE (2003) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea J Geophys Res-Oceans 108

  51. Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble square root filters. Mon Weather Rev 131:1485–1490

    Article  Google Scholar 

  52. Tragou E, Garrett C (1997) The shallow thermohaline circulation of the Red Sea. Deep-Sea Res Pt I 44:1355–1376. doi:10.1016/S0967-0637(97)00026-5

    Article  Google Scholar 

  53. Triantafyllou G, Yao F, Petihakis G, Tsiaras KP, Raitsos DE, Hoteit I (2014) Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J Geophys Res: Oceans 119:1791–1811. doi:10.1002/2013JC009641

    Article  Google Scholar 

  54. Tseng KH, Shum CK, Yi YC, Emery WJ, Kuo CY, Lee H, Wang HH (2014) The improved retrieval of coastal sea surface heights by retracking modified radar altimetry waveforms. Ieee T Geosci Remote 52:991–1001

    Article  Google Scholar 

  55. Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (2011) Coastal altimetry. Springer Science & Business Media

  56. Xie JP, Zhu J (2010) Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Model 33:283–298. doi:10.1016/j.ocemod.2010.03.002

    Article  Google Scholar 

  57. Xie J, Counillon F, Zhu J, Bertino L (2011) An eddy resolving tidal-driven model of the South China Sea assimilating along-track SLA data using the EnOI. Ocean Sci 7:609–627. doi:10.5194/os-7-609-2011

    Article  Google Scholar 

  58. Yang L, Lin MS, Liu QH, Pan DL (2012) A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction. Int J Remote Sens 33:7806–7819

    Article  Google Scholar 

  59. Yao FC, Hoteit I, Pratt LJ, Bower AS, Kohl A, Gopalakrishnan G, Rivas D (2014a) Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J Geophys Res-Oceans 119:2263–2289. doi:10.1002/2013jc009331

    Article  Google Scholar 

  60. Yao FC, Hoteit I, Pratt LJ, Bower AS, Zhai P, Kohl A, Gopalakrishnan G (2014b) Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J Geophys Res-Oceans 119:2238–2262. doi:10.1002/2013jc009004

    Article  Google Scholar 

  61. Zhai P, Bower A (2013) The response of the Red Sea to a strong wind jet near the Tokar gap in summer. J Geophys Res-Oceans 118:23. doi:10.1029/2012JC008444

    Google Scholar 

  62. Zhai XM, Marshall DP (2013) Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J Phys Oceanogr 43:95–103. doi:10.1175/Jpo-D-12-021.1

    Article  Google Scholar 

  63. Zhai P, Pratt LJ, Bower A (2015) On the crossover of boundary currents in an idealized model of the Red Sea. J Phys Oceanogr 45:1410–1425

    Article  Google Scholar 

  64. Zhan P, Subramanian AC, Yao FC, Hoteit I (2014) Eddies in the Red Sea: a statistical and dynamical study. J Geophys Res-Oceans 119:3909–3925

    Article  Google Scholar 

  65. Zhan P, Subramanian AC, Yao FC, Kartadikaria AR, Guo D, Hoteit I (2016) The eddy kinetic energy budget in the Red Sea J Geophys Res-Oceans Accepted Author Manuscript. doi:10.1002/2015JC011589

Download references

Acknowledgments

This research work was supported by King Abdullah University of Science and Technology (KAUST), Saudi Arabia, and the Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). The research made use of the resources of the Super computing Laboratory and computer clusters at KAUST.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Hoteit.

Additional information

This article is part of the Topical Collection on the 18th Joint Numerical Sea Modelling Group Conference, Oslo, Norway, 10–12 May 2016

Responsible Editor: Ulf Gräwe

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toye, H., Zhan, P., Gopalakrishnan, G. et al. Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing. Ocean Dynamics 67, 915–933 (2017). https://doi.org/10.1007/s10236-017-1064-1

Download citation

Keywords

  • Red Sea
  • Data assimilation
  • Seasonal variability
  • Ensemble Kalman filter
  • Ensemble optimal interpolation