Abstract
We present our efforts to build an ensemble data assimilation and forecasting system for the Red Sea. The system consists of the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm) to simulate ocean circulation and of the Data Research Testbed (DART) for ensemble data assimilation. DART has been configured to integrate all members of an ensemble adjustment Kalman filter (EAKF) in parallel, based on which we adapted the ensemble operations in DART to use an invariant ensemble, i.e., an ensemble Optimal Interpolation (EnOI) algorithm. This approach requires only single forward model integration in the forecast step and therefore saves substantial computational cost. To deal with the strong seasonal variability of the Red Sea, the EnOI ensemble is then seasonally selected from a climatology of long-term model outputs. Observations of remote sensing sea surface height (SSH) and sea surface temperature (SST) are assimilated every 3 days. Real-time atmospheric fields from the National Center for Environmental Prediction (NCEP) and the European Center for Medium-Range Weather Forecasts (ECMWF) are used as forcing in different assimilation experiments. We investigate the behaviors of the EAKF and (seasonal-) EnOI and compare their performances for assimilating and forecasting the circulation of the Red Sea. We further assess the sensitivity of the assimilation system to various filtering parameters (ensemble size, inflation) and atmospheric forcing.
This is a preview of subscription content, access via your institution.












Notes
- 1.
In CPU time and not necessarily in real time as the ensemble members can be integrated in parallel.
References
Aksoy A, Dowell DC, Snyder C (2009) A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-Scale Analyses. Mon Weather Rev 137:1805–1824. doi:10.1175/2008mwr2691.1
Altaf MU, Butler T, Mayo T, Luo X, Dawson C, Heemink AW, Hoteit I (2014) A comparison of ensemble Kalman filters for storm surge assimilation. Mon Weather Rev 142:2899–2914. doi:10.1175/Mwr-D-13-00266.1
Anderson JL (2001) An ensemble adjustment Kalman filter for data assimilation. Mon Weather Rev 129:2884–2903
Anderson JL (2003) A local least squares framework for ensemble filtering. Mon Weather Rev 131:634–642. doi:10.1175/1520-0493(2003)131<0634:Allsff>2.0.Co;2
Anderson JL, Collins N (2007) Scalable implementations of ensemble filter algorithms for data assimilation. J Atmos Ocean Technol 24:1452–1463. doi:10.1175/Jtech2049.1
Anderson J, Hoar T, Raeder K, Liu H, Collins N, Torn R, Avellano A (2009) The data assimilation research testbed a community facility. B Am Meteorol Soc 90:1283–1296. doi:10.1175/2009bams2618.1
Backeberg BC, Counillon F, Johannessen JA, Pujol MI (2014) Assimilating along-track SLA data using the EnOI in an eddy resolving model of the Agulhas system. Ocean Dyn 64:1121–1136. doi:10.1007/s10236-014-0717-6
Chen CS et al (2014) Process modeling studies of physical mechanisms of the formation of an anticyclonic eddy in the central Red Sea. J Geophys Res-Oceans 119:1445–1464
Cipollini P et al (2010) The role of altimetry in coastal observing systems. Proceedings of OceanObs 9:181–191
Clifford M, Horton C, Schmitz J, Kantha LH (1997) An oceanographic nowcast/forecast system for the Red Sea. J Geophys Res-Oceans 102:25101–25122
Ducet N, Le Traon PY, Reverdin G (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2. J Geophys Res-Oceans 105:19477–19498. doi:10.1029/2000jc900063
Edwards CA, Moore AM, Hoteit I, Cornuelle BD (2015) Regional ocean data assimilation. Annu Rev Mar Sci 7:21–42. doi:10.1146/annurev-marine-010814-015821
Eshel G, Naik NH (1997) Climatological coastal jet collision, intermediate water formation, and the general circulation of the Red Sea. J Phys Oceanogr 27:1233–1257
Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J Geophys Res-Oceans 99:10143–10162. doi:10.1029/94jc00572
Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367. doi:10.1007/s10236-003-0036-9
Evensen G (2004) Sampling strategies and square root analysis schemes for the EnKF. Ocean Dyn 54:539–560. doi:10.1007/s10236-004-0099-2
Fu WW, She J, Zhuang SY (2011) Application of an ensemble optimal interpolation in a north/Baltic Sea model: assimilating temperature and salinity profiles. Ocean Model 40:227–245
Furrer R, Bengtsson T (2007) Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J Multivar Anal 98:227–255. doi:10.1016/j.jmva.2006.08.003
Gottwald GA (2014) Controlling balance in an ensemble Kalman filter. Nonlinear Process Geophys 21:417–426. doi:10.5194/npg-21-417-2014
Hamill TM, Snyder C (2000) A hybrid ensemble Kalman filter—3D variational analysis scheme. Mon Weather Rev 128:2905–2919. doi:10.1175/1520-0493(2000)128<2905:Ahekfv>2.0.Co;2
Hamill TM, Whitaker JS (2011) What constrains spread growth in forecasts initialized from ensemble Kalman filters? Mon Weather Rev 139:117–131. doi:10.1175/2010mwr3246.1
Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:2776–2790. doi:10.1175/1520-0493(2001)129<2776:Ddfobe>2.0.Co;2
Hoteit I, Pham DT (2004) An adaptively reduced-order extended Kalman filter for data assimilation in the tropical Pacific. J Mar Syst 45:173–188
Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in tropical Pacific. J Mar Syst 36:101–127. doi:10.1016/S0924-7963(02)00129-X
Hoteit I et al (2013) A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dynam Atmos Oceans 63:1–23. doi:10.1016/j.dynatmoce.2013.03.002
Hoteit I, Pham DT, Gharamti ME, Luo X (2015) Mitigating observation perturbation sampling errors in the stochastic EnKF. Mon Weather Rev 143:2918–2936. doi:10.1175/Mwr-D-14-00088.1
Houtekamer PL, Mitchell HL (1998) Data assimilation using an ensemble Kalman filter technique. Mon Weather Rev 126:796–811. doi:10.1175/1520-0493(1998)126<0796:Dauaek>2.0.Co;2
Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev 129:123–137. doi:10.1175/1520-0493(2001)129<0123:Asekff>2.0.Co;2
Houtekamer PL, Zhang F (2016) Review of the ensemble Kalman filter for atmospheric data assimilation. Mon Weather Rev. doi:10.1175/MWR-D-15-0440.1
Johns WE, Sofianos SS (2012) Atmospherically forced exchange through the Bab el Mandeb Strait. J Phys Oceanogr 42:1143–1157
Kohl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38:1913–1930
Le Henaff M, Roblou L, Bouffard J (2011) Characterizing the Navidad current interannual variability using coastal altimetry. Ocean Dyn 61:425–437
Ledimet FX, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations—theoretical aspects. Tellus A 38:97–110
Luo XD, Hoteit I (2013) Covariance inflation in the ensemble Kalman filter: a residual nudging perspective and some implications. Mon Weather Rev 141:3360–3368. doi:10.1175/Mwr-D-13-00067.1
Lyu GK, Wang H, Zhu J, Wang DK, Xie JP, Liu GM (2014) Assimilating the along-track sea level anomaly into the regional ocean modeling system using the ensemble optimal interpolation. Acta Oceanol Sin 33:72–82. doi:10.1007/s13131-014-0469-7
Madsen KS, Hoyer JL, Fu WW, Donlon C (2015) Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea. J Geophys Res-Oceans 120:6405–6418. doi:10.1002/2015jc011070
Mitchell HL, Houtekamer PL, Pellerin G (2002) Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon Weather Rev 130:2791–2808. doi:10.1175/1520-0493(2002)130<2791:Esbame>2.0.Co;2
Murray SP, Johns W (1997) Direct observations of seasonal exchange through the Bab el Mandab Strait. Geophys Res Lett 24:2557–2560
Nerger L, Hiller W, Schroter J (2005) PDAF—the parallel data assimilation framework: experiences with Kalman filtering use of high performance computing in meteorology:63–83 doi: 10.1142/9789812701831_0006
Oke PR, Allen JS, Miller RN, Egbert GD, Kosro PM (2002) Assimilation of surface velocity data into a primitive equation coastal ocean model J Geophys Res-Oceans 107 doi:Artn 3122 10.1029/2000jc000511
Oke PR, Sakov P, Corney SP (2007) Impacts of localisation in the EnKF and EnOI: experiments with a small model. Ocean Dyn 57:32–45. doi:10.1007/s10236-006-0088-8
Raeder K, Anderson JL, Collins N, Hoar TJ, Kay JE, Lauritzen PH, Pincus R (2012) DART/CAM: an ensemble data assimilation system for CESM atmospheric models. J Clim 25:6304–6317. doi:10.1175/Jcli-D-11-00395.1
Reichle RH, McLaughlin DB, Entekhabi D (2002) Hydrologic data assimilation with the ensemble Kalman filter. Mon Weather Rev 130:103–114. doi:10.1175/1520-0493(2002)130<0103:Hdawte>2.0.Co;2
Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496. doi:10.1175/2007jcli1824.1
Sakov P, Bertino L (2011) Relation between two common localisation methods for the EnKF. Comput Geosci 15:225–237
Sakov P, Sandery PA (2015) Comparison of EnOI and EnKF regional ocean reanalysis systems. Ocean Model 89:45–60. doi:10.1016/j.ocemod.2015.02.003
Scharroo R, Leuliette EW, Lillibridge JL, Byrne D, Naeije MC, Mitchum GT (2013) RADS: Consistent multi-mission products. In, 2013
Siddall M, Smeed DA, Matthiesen S, Rohling EJ (2002) Modelling the seasonal cycle of the exchange flow in Bab el Mandab (Red Sea). Deep-Sea Res Pt I 49:1551–1569
Sofianos SS, Johns WE (2002) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation, 1. Exchange between the Red Sea and the Indian Ocean J Geophys Res-Oceans 107
Sofianos SS, Johns WE (2003) An oceanic general circulation model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea J Geophys Res-Oceans 108
Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble square root filters. Mon Weather Rev 131:1485–1490
Tragou E, Garrett C (1997) The shallow thermohaline circulation of the Red Sea. Deep-Sea Res Pt I 44:1355–1376. doi:10.1016/S0967-0637(97)00026-5
Triantafyllou G, Yao F, Petihakis G, Tsiaras KP, Raitsos DE, Hoteit I (2014) Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J Geophys Res: Oceans 119:1791–1811. doi:10.1002/2013JC009641
Tseng KH, Shum CK, Yi YC, Emery WJ, Kuo CY, Lee H, Wang HH (2014) The improved retrieval of coastal sea surface heights by retracking modified radar altimetry waveforms. Ieee T Geosci Remote 52:991–1001
Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (2011) Coastal altimetry. Springer Science & Business Media
Xie JP, Zhu J (2010) Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid coordinate ocean model. Ocean Model 33:283–298. doi:10.1016/j.ocemod.2010.03.002
Xie J, Counillon F, Zhu J, Bertino L (2011) An eddy resolving tidal-driven model of the South China Sea assimilating along-track SLA data using the EnOI. Ocean Sci 7:609–627. doi:10.5194/os-7-609-2011
Yang L, Lin MS, Liu QH, Pan DL (2012) A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction. Int J Remote Sens 33:7806–7819
Yao FC, Hoteit I, Pratt LJ, Bower AS, Kohl A, Gopalakrishnan G, Rivas D (2014a) Seasonal overturning circulation in the Red Sea: 2. Winter circulation. J Geophys Res-Oceans 119:2263–2289. doi:10.1002/2013jc009331
Yao FC, Hoteit I, Pratt LJ, Bower AS, Zhai P, Kohl A, Gopalakrishnan G (2014b) Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation. J Geophys Res-Oceans 119:2238–2262. doi:10.1002/2013jc009004
Zhai P, Bower A (2013) The response of the Red Sea to a strong wind jet near the Tokar gap in summer. J Geophys Res-Oceans 118:23. doi:10.1029/2012JC008444
Zhai XM, Marshall DP (2013) Vertical eddy energy fluxes in the North Atlantic subtropical and subpolar gyres. J Phys Oceanogr 43:95–103. doi:10.1175/Jpo-D-12-021.1
Zhai P, Pratt LJ, Bower A (2015) On the crossover of boundary currents in an idealized model of the Red Sea. J Phys Oceanogr 45:1410–1425
Zhan P, Subramanian AC, Yao FC, Hoteit I (2014) Eddies in the Red Sea: a statistical and dynamical study. J Geophys Res-Oceans 119:3909–3925
Zhan P, Subramanian AC, Yao FC, Kartadikaria AR, Guo D, Hoteit I (2016) The eddy kinetic energy budget in the Red Sea J Geophys Res-Oceans Accepted Author Manuscript. doi:10.1002/2015JC011589
Acknowledgments
This research work was supported by King Abdullah University of Science and Technology (KAUST), Saudi Arabia, and the Saudi ARAMCO Marine Environmental Research Center at KAUST (SAMERCK). The research made use of the resources of the Super computing Laboratory and computer clusters at KAUST.
Author information
Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on the 18th Joint Numerical Sea Modelling Group Conference, Oslo, Norway, 10–12 May 2016
Responsible Editor: Ulf Gräwe
Rights and permissions
About this article
Cite this article
Toye, H., Zhan, P., Gopalakrishnan, G. et al. Ensemble data assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing. Ocean Dynamics 67, 915–933 (2017). https://doi.org/10.1007/s10236-017-1064-1
Received:
Accepted:
Published:
Issue Date:
Keywords
- Red Sea
- Data assimilation
- Seasonal variability
- Ensemble Kalman filter
- Ensemble optimal interpolation