Advertisement

Ocean Dynamics

, Volume 67, Issue 5, pp 597–609 | Cite as

Observations of the turbulent kinetic energy dissipation rate in the upper central South China Sea

Article

Abstract

Measurements of the turbulent kinetic energy dissipation rate (ε), velocity, temperature, and salinity were obtained for the upper ocean of the central South China Sea (14.5° N, 117.0° E) during an experimental campaign from May 11 to 13, 2010. Dissipation in the diurnal mixed layer showed a diurnal variability that was strongly affected by the surface buoyancy flux. Dissipation was enhanced (ε ∼ 10−7 W kg−1) at night due to the convective mixing and was weakened (ε ∼ 10−9 W kg−1) in daytime due to the stratification. Dissipation in the thermocline varied with time under the influence of internal waves. Shear from high-frequency internal waves (period ∼8 h) played an important role in enhancing the turbulent mixing in the thermocline. In the period of strong high-frequency internal waves, the shear from high-frequency internal waves became strong and the depth-averaged ε in the thermocline was elevated by almost one order of magnitude. Compared with the dissipation in the thermocline, dissipation below was weaker (the time-averaged ε ∼ 10−10 W kg−1). The observation indicates that the dissipation rates during the measurements can be parameterized by the MacKinnon-Gregg model that is widely used in the continental shelf but are not in agreement with the Gregg-Henyey model used for the open ocean.

Keywords

Dissipation rate Surface buoyancy flux Internal wave Parameterization 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China: 41630970, 41376022, 41676022, and 41521005. The data we used is from South China Sea Institute of Oceanology.

References

  1. Alford MH et al (2015) The formation and fate of internal waves in the South China Sea. Nature 521(7550):65–69. doi: 10.1038/nature14399 CrossRefGoogle Scholar
  2. Brainerd KE, Gregg MC (1993) Diurnal restratification and turbulence in the oceanic surface mixed-layer: 1. Observations. J Geophys Res-Oceans 98(C12):22645–22656. doi: 10.1029/93jc02297 CrossRefGoogle Scholar
  3. Callaghan AH, Ward B, Vialard J (2014) Influence of surface forcing on near-surface and mixing layer turbulence in the tropical Indian Ocean. Deep-Sea Res Pt I 94:107–123. doi: 10.1016/j.dsr.2014. 08.009 CrossRefGoogle Scholar
  4. Carter GS, Gregg MC (2006) Persistent near-diurnal internal waves observed above a site of M-2 barotropic-to-baroclinic conversion. J Phys Oceanogr 36(6):1136–1147. doi: 10.1175/Jpo2884.1 CrossRefGoogle Scholar
  5. Cazelles B, Chavez M, Berteaux D, Ménard F, Vik J, Jenouvrier S, Stenseth N (2008) Wavelet analysis of ecological time series. Oecologia 156(2):287–304CrossRefGoogle Scholar
  6. Cummins PF, Cherniawsky JY, Foreman MGG (2001) North pacific internal tides from the Aleutian Ridge: altimeter observations and modeling. J Mar Res 59(2):167–191. doi: 10.1357/002224001762 882628 CrossRefGoogle Scholar
  7. Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Tech 19(2):183–204CrossRefGoogle Scholar
  8. Garrett C (1975) Tides in gulfs. Paper presented at Deep Sea Research and Oceanographic Abstracts, ElsevierGoogle Scholar
  9. Gregg MC (1989) Scaling turbulent dissipation in the thermocline. J Geophys Res-Oceans 94(C7):9686–9698. doi: 10.1029/Jc094ic07p09686 CrossRefGoogle Scholar
  10. Gregg MC (1998) Estimation and geography of diapycnal mixing in the stratified ocean. Coast Estuar Stud 54:305–338CrossRefGoogle Scholar
  11. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Proc Geoph 11(5/6):561–566CrossRefGoogle Scholar
  12. Henyey FS, Wright J, Flatte SM (1986) Energy and action flow through the internal wave field—an eikonal approach. J Geophys Res-Oceans 91(C7):8487–8495. doi: 10.1029/Jc091ic07p08487 CrossRefGoogle Scholar
  13. Huang CJ, Qiao FL, Dai DJ, Ma HY, Guo JS (2012) Field measurement of upper ocean turbulence dissipation associated with wave-turbulence interaction in the South China Sea. J Geophys Res-Oceans, 117, doi: 10.1029/2011jc007806
  14. Klymak JM, Moum JN, Nash JD, Kunze E, Girton JB, Carter GS, Lee CM, Sanford TB, Gregg MC (2006) An estimate of tidal energy lost to turbulence at the Hawaiian Ridge. J Phys Oceanogr 36(6):1148–1164. doi: 10.1175/Jpo2885.1 CrossRefGoogle Scholar
  15. Lamb KG (2004) Nonlinear interaction among internal wave beams generated by tidal flow over supercritical topography. Geophys Res Lett, 31(9), doi:Artn L09313 10.1029/2003gl019393
  16. Large WG, Pond S (1981) Open ocean momentum flux measurements in moderate to strong winds. J Phys Oceanogr 11(3):324–336. doi: 10.1175/1520-0485(1981)011<0324:Oomfmi>2.0.Co;2 CrossRefGoogle Scholar
  17. Ledwell JR, Watson AJ, Law CS (1993) Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364(6439):701–703. doi: 10.1038/364701a0 CrossRefGoogle Scholar
  18. Levitus S (1983) Climatological atlas of the world ocean. Eos, Transactions American Geophysical Union 64(49):962–963CrossRefGoogle Scholar
  19. Li XF, Jackson CR, Pichel WG (2013) Internal solitary wave refraction at Dongsha Atoll, South China Sea. Geophys Res Lett 40(12):3128–3132. doi: 10.1002/Grl.50614 CrossRefGoogle Scholar
  20. Liu AK, Chang YS, Hsu MK, Liang NK (1998) Evolution of nonlinear internal waves in the East and South China Seas. J Geophys Res-Oceans 103(C4):7995–8008. doi: 10.1029/97jc01918 CrossRefGoogle Scholar
  21. MacKinnon JA, Gregg MC (2003) Mixing on the late-summer New England shelf—Solibores, shear, and stratification. J Phys Oceanogr 33(7):1476–1492. doi: 10.1175/1520-0485(2003)033 CrossRefGoogle Scholar
  22. MacKinnon JA, Gregg MC (2005) Spring mixing: turbulence and internal waves during restratification on the New England shelf. J Phys Oceanogr 35(12):2425–2443. doi: 10.1175/Jpo 2821.1 CrossRefGoogle Scholar
  23. Osborn TR (1980) Estimates of the local-rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10(1):83–89. doi: 10.1175/1520-0485(1980) CrossRefGoogle Scholar
  24. Palmer MR, Rippeth TP, Simpson JH (2008) An investigation of internal mixing in a seasonally stratified shelf sea. J Geophys Res-Oceans 113(C12). doi: 10.1029/2007jc004531
  25. Palmer MR, Polton JA, Inall ME, Rippeth TP, Green JAM, Sharples J, Simpson JH (2013) Variable behavior in pycnocline mixing over shelf seas. Geophys Res Lett 40(1):161–166. doi: 10.1029/2012 gl054638 CrossRefGoogle Scholar
  26. Polzin KL, Toole JM, Schmitt RW (1995) Finescale parameterizations of turbulent dissipation. J Phys Oceanogr 25(3):306–328. doi: 10.1175/1520-0485(1995) CrossRefGoogle Scholar
  27. Sharples J, Moore CM, Abraham ER (2001) Internal tide dissipation, mixing, and vertical nitrate flux at the shelf edge of NE New Zealand. J Geophys Res-Oceans 106(C7):14069–14081. doi: 10.1029/2000jc 000604 CrossRefGoogle Scholar
  28. Shay TJ, Gregg MC (1986) Convectively driven turbulent mixing in the Upper Ocean. J Phys Oceanogr 16(11):1777–1798. doi: 10.1175/1520-0485(1986)016<1777:Cdtmit>2.0.Co;2 CrossRefGoogle Scholar
  29. Simmons HL, Hallberg RW, Arbic BK (2004) Internal wave generation in a global baroclinic tide model. Deep-Sea Res Pt Ii 51(25–26):3043–3068. doi: 10.1016/j.dsr2.2004.09.015 CrossRefGoogle Scholar
  30. St Laurent L (2008) Turbulent dissipation on the margins of the South China Sea. Geophys Res Lett 35(23). doi: 10.1029/2008gl035520
  31. Teoh SG, Ivey GN, Imberger J (1997) Laboratory study of the interaction between two internal wave rays. J Fluid Mech 336:91–122. doi: 10.1017/S0022112096004508 CrossRefGoogle Scholar
  32. Tian JW, Yang QX, Liang XF, Xie LL, Hu DX, Wang F, Qu TD (2006) Observation of Luzon Strait transport. Geophys Res Lett 33(19). doi: 10.1029/2006gl026272
  33. Tian JW, Yang QX, Zhao W (2009) Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr 39(12):3191–3203. doi: 10.1175/2009jpo3899.1 CrossRefGoogle Scholar
  34. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79(1):61–78CrossRefGoogle Scholar
  35. van der Lee EM, Umlauf L (2011) Internal wave mixing in the Baltic Sea: near-inertial waves in the absence of tides. J Geophys Res-Oceans 116(C10). doi: 10.1029/2011jc007072
  36. Vlasenko V, Guo CC, Stashchuk N (2012) On the mechanism of A-type and B-type internal solitary wave generation in the northern South China Sea. Deep-Sea Res Pt I 69:100–112. doi: 10.1016/j.dsr. 2012.07.004 CrossRefGoogle Scholar
  37. Wang XW, Peng SQ, Liu ZY, Huang RX, Qian YK, Li YN (2016) Tidal mixing in the South China Sea: an estimate based on the internal tide energetics. J Phys Oceanogr 46(1):107–124. doi: 10.1175/Jpo -D-15-0082.1 CrossRefGoogle Scholar
  38. Wijesekera H, Padman L, Dillon T, Levine M, Paulson C, Pinkel R (1993) The application of internal-wave dissipation models to a region of strong mixing. J Phys Oceanogr 23(2):269–286. doi: 10.1175/1520-0485(1993)023<0269:Taoiwd>2.0.Co;2 CrossRefGoogle Scholar
  39. Wolk F, Yamazaki H, Seuront L, Lueck RG (2002) A new free-fall profiler for measuring biophysical microstructure. J Atmos Ocean Tech 19(5):780–793. doi: 10.1175/1520-0426(2002)019 CrossRefGoogle Scholar
  40. Xie XH, Cuypers Y, Bouruet-Aubertot P, Ferron B, Pichon A, Lourenco A, Cortes N (2013) Large-amplitude internal tides, solitary waves, and turbulence in the central Bay of Biscay. Geophys Res Lett 40(11):2748–2754. doi: 10.1002/Grl.50533 CrossRefGoogle Scholar
  41. Yang YQ, Tian JW, Zhao W, Liang XF, Zhou L (2014) Observations of turbulence on the shelf and slope of northern South China Sea. Deep-Sea Res Pt I 87:43–52. doi: 10.1016/j.dsr.2014.02.006 CrossRefGoogle Scholar
  42. Yang QX, Zhao W, Liang X, Tian J (2016) Three-dimensional distribution of turbulent mixing in the South China Sea. J Phys Oceanogr 46(3):769–788. doi: 10.1175/JPO-D-14-0220.1 CrossRefGoogle Scholar
  43. Zhao ZX (2014) Internal tide radiation from the Luzon Strait. J Geophys Res-Oceans 119(8):5434–5448. doi: 10.1002/2014JC010014 CrossRefGoogle Scholar
  44. Zu T, Gan J, Erofeeva SY (2008) Numerical study of the tide and tidal dynamics in the South China Sea. Deep-Sea Res I Oceanogr Res Pap 55(2):137–154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Chang-Rong Liang
    • 1
    • 2
  • Gui-Ying Chen
    • 1
  • Xiao-Dong Shang
    • 1
  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations