Advertisement

Ocean Dynamics

, Volume 67, Issue 6, pp 673–690 | Cite as

A hybrid ensemble-OI Kalman filter for efficient data assimilation into a 3-D biogeochemical model of the Mediterranean

  • Kostas P. TsiarasEmail author
  • Ibrahim Hoteit
  • Sofia Kalaroni
  • George Petihakis
  • George Triantafyllou
Article

Abstract

A hybrid ensemble data assimilation scheme (HYBRID), combining a flow-dependent with a static background covariance, was developed and implemented for assimilating satellite (SeaWiFS) Chl-a data into a marine ecosystem model of the Mediterranean. The performance of HYBRID was assessed against a model free-run, the ensemble-based singular evolutive interpolated Kalman (SEIK) and its variant with static covariance (SFEK), with regard to the assimilated variable (Chl-a) and non-assimilated variables (dissolved inorganic nutrients). HYBRID was found more efficient than both SEIK and SFEK, reducing the Chl-a error by more than 40% in most areas, as compared to the free-run. Data assimilation had a positive overall impact on nutrients, except for a deterioration of nitrates simulation by SEIK in the most productive area (Adriatic). This was related to SEIK pronounced update in this area and the phytoplankton limitation on phosphate that lead to a built up of excess nitrates. SEIK was found more efficient in productive and variable areas, where its ensemble exhibited important spread. SFEK had an effect mostly on Chl-a, performing better than SEIK in less dynamic areas, adequately described by the dominant modes of its static covariance. HYBRID performed well in all areas, due to its “blended” covariance. Its flow-dependent component appears to track changes in the system dynamics, while its static covariance helps maintaining sufficient spread in the forecast. HYBRID sensitivity experiments showed that an increased contribution from the flow-dependent covariance results in a deterioration of nitrates, similar to SEIK, while the improvement of HYBRID with increasing flow-dependent ensemble size quickly levels off.

Keywords

Data assimilation Biogeochemical model Kalman filter Ocean color Mediterranean 

Notes

Acknowledgements

This work was supported by EU OPEC project, funded from the European Union’s Seventh Framework Program (FP7/2007-2013) under grant agreement n° 283291. We thank Dionysios Raitsos for kindly providing the SeaWiFS Chl-a data.

References

  1. Allen JI, Somerfield PJ, Siddorn J (2002) Primary and bacterial production in the Mediterranean Sea: a modelling study. J Mar Syst 33-34:473–495. doi: 10.1016/S0924-7963(02)00072-6 CrossRefGoogle Scholar
  2. Allen JI, Eknes M, Evensen G, (2003) An Ensemble Kalman Filter with a complex marine ecosystem model: Hindcasting phytoplankton in the Cretan Sea. Annales Geophysicae 21(1):399–411Google Scholar
  3. Anderson JL (2009) Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus A 61:72–83CrossRefGoogle Scholar
  4. Azov Y (1991) Desert? Mar Pollut Bull 23:225–232CrossRefGoogle Scholar
  5. Barale V, Gade, M (Ed.) (2008) Remote sensing of the European seas. Springer Science+Business Media: Heidelberg. 22, pp. 514Google Scholar
  6. Baretta JW, Ebenhoh W, Ruardij P (1995) The European regional seas ecosystem model, a complex marine ecosystem model. Neth J Sea Res 33:233–246CrossRefGoogle Scholar
  7. Blackford JC, Burkill PH (2002) Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonalforcing: the application of a generic model. J Mar Syst 36(3–4):239–267CrossRefGoogle Scholar
  8. Blumberg AF, Mellor GL (1983) Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight. J Geophys Res 88(C8):4579–4459CrossRefGoogle Scholar
  9. Bosc, E., Bricaud, A. et Antoine, D., (2004) Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations, Global Biogeochem Cycles, 18 (GB1005).Google Scholar
  10. Brewin RJW, Dall'Olmo G, Pardo S, van Dongen-Vogels V, Boss ES (2016) Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals. Remote Sens Environ 183:82–97. doi: 10.1016/j.rse.2016.05.005 CrossRefGoogle Scholar
  11. Ciavatta S, Torres R, Saux-Picart S, Allen JI (2011) Can ocean color assimilation improve biogeochemical hindcasts in shelf seas? J Geophys Res 116:C12043CrossRefGoogle Scholar
  12. Counillon F, Sakov P, Bertino L (2009) Application of a hybrid EnKF-OI to ocean forecasting. Ocean Sci 5:389–401CrossRefGoogle Scholar
  13. Dreano, D., Tandeo, P., Pulido, M., Ait-El-Fquih, B., Chonavelb, T., Hoteit, I. (2017) Estimating model error covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximisation algorithm. Quarterly Journal of the Royal Meteorological Society, under minor revision.Google Scholar
  14. Edwards C a, Moore AM, Hoteit I, Cornuelle BD (2015) Regional ocean data assimilation. Annu Rev Mar Sci 7:21–42. doi: 10.1146/annurev-marine-010814-015821 CrossRefGoogle Scholar
  15. Etherton BJ, Bishop CH (2004) Resilience of hybrid ensemble/3DVAR analysis schemes to model error and ensemble covariance error. Mon Weather Rev 132:1065–1080CrossRefGoogle Scholar
  16. Evensen G (2003) The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dynam 53:343–367CrossRefGoogle Scholar
  17. Gharamti ME, Valstar J, Hoteit I (2014) An adaptive hybrid EnKF-OI scheme for efficient state-parameter estimation of reactive contaminant transport models. Adv Water Resour 71(1–15):2014Google Scholar
  18. Gregg WW, Casey NW (2004) Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sens Environ 93:463–479. doi: 10.1016/j.rse.2003.12.012 CrossRefGoogle Scholar
  19. Hamill TM, Snyder C (2000) A hybrid ensemble Kalman filter—3D variational analysis scheme. Mon Weather Rev 128:2905–2919CrossRefGoogle Scholar
  20. Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon Weather Rev 129:1790–2776Google Scholar
  21. Horton C, Clifford M, Schmitz J, Kantha LH (1997) A real-time oceano-graphic nowcast/forecast system for the Mediterranean sea. J Geophys Res 102(C11):25123–25156CrossRefGoogle Scholar
  22. Hoteit I, Pham D-T (2004) An adaptively reduced-order extended Kalman filter for data assimilation in the tropical Pacific. J Mar Syst 45:173–188CrossRefGoogle Scholar
  23. Hoteit I, Pham DT, Blum J (2001) A semi-evolutive partially local filter for data assimilation. Mar Pollut Bull 43:164–174CrossRefGoogle Scholar
  24. Hoteit I, Pham DT, Blum J (2002) A simplified reduced order Kalman filtering and application to altimetric data assimilation in Tropical Pacific. J Mar Syst 36:101–127CrossRefGoogle Scholar
  25. Hoteit I, Triantafyllou G, Petihakis G, Allen JI (2003) A singular evolutive extended Kalman filter to assimilate real in situ data in a 1-D marine ecosystem model. Ann Geophys. doi: 10.5194/angeo-21-389-2003 Google Scholar
  26. Hoteit I, Triantafyllou G, Petihakis G (2004) Towards a data assimilation system for the Cretan Sea ecosystem using a simplified Kalman filter. J Mar Syst 45:159–171CrossRefGoogle Scholar
  27. Hoteit I, Triantafyllou G, Petihakis G (2005) Efficient data assimilation into a complex, 3-D physical-biogeochemical model using partially-local Kalman filters. Ann Geophys 23:3171–3185CrossRefGoogle Scholar
  28. Hoteit I, Luo X, Pham D-T (2012) Particle kalman filtering: a nonlinear bayesian framework for ensemble kalman filters. Mon Weather Rev 140(2):528–542CrossRefGoogle Scholar
  29. Hoteit I, Hoar T, Gopalakrishnan G, Collins N, Anderson J, Cornuelle B, Köhl A, Heimbach P, Kohl A, Heimbach P (2013) A MITgcm/DART ensemble analysis and prediction system with application to the Gulf of Mexico. Dyn Atmos Ocean 63:1–23. doi: 10.1016/j.dynatmoce.2013.03.002 CrossRefGoogle Scholar
  30. Hu J, Fennel K, Mattern JP, Wilkin JL (2012) Data assimilation with a local Ensemble Kalman Filter applied to a three-dimensional biological model of the Middle Atlantic Bight. J Mar Syst 94:145–156CrossRefGoogle Scholar
  31. Jolliff, J., Kindle, J., Shulman, I., (2009) Summary diagrams for coupled hydrodynamic- ecosystem model skill assessment JMar Sys 76, 64–82. http://dx.doi.org/ 10.1016/ j.jmarsys.2008.05.014
  32. Kalaroni S, Tsiaras K, Petihakis G, Hoteit I, Economou-Amilli A, Triantafyllou G (2016) Data assimilation of depth-distributed satellite chlorophyll-α in two Mediterranean contrasting sites. J Mar Syst 160:40–53. doi: 10.1016/jmarsys.2016.03.018 CrossRefGoogle Scholar
  33. Korres G, Lascaratos A (2003) An eddy resolving model of the Aegean and Levantine basins for the Mediterranean Forecasting System Pilot Project (MFSPP): implementation and climatological runs. Ann Geophys 21:205–220CrossRefGoogle Scholar
  34. Korres G, Hoteit I, Triantafyllou G (2007) Data assimilation into a Princeton Ocean Model of the Mediterranean Sea using advanced Kalman filters. J Mar Syst 65:84–104. doi: 10.1016/j.jmarsys.2006.09.005 CrossRefGoogle Scholar
  35. Krom M, Herut B, Mantoura CFR (2004) Nutrient budget for the Eastern Mediterranean: implications for phosphorus limitation. Limnol Oceanogr 49:1582–1592CrossRefGoogle Scholar
  36. Lenartz F, Raick C, Soetaert K, Grégoire M (2007) Application of an Ensemble Kalman filter to a 1-D coupled hydrodynamic-ecosystem model of the Ligurian Sea. J Mar Syst 68(3–4):327–348Google Scholar
  37. Li H, Kalnay E, Miyoshi T (2009) Simultaneous estimation of covariance inflation and observation errors within an ensemble Kalman filter. QJR Meteorol Soc 135:523–533. doi: 10.1002/qj.371 CrossRefGoogle Scholar
  38. Ludwig, W., .Dumont, E., Meybeck, M., Heussner, S., (2009) River discharges of water and nutrients to the Mediterranean and Black Sea: major drivers for ecosystem changes during past and future decades? Prog Oceanogr 80: 199–217CrossRefGoogle Scholar
  39. Lui B, Ait-El-Fquih B, Hoteit I (2016) Efficient Kernel-based ensemble Gaussian mixture filtering. Mon Wea Rev 144:781–800Google Scholar
  40. Luo X, Bhakta T (2016) Estimating observation error covariance matrix of seismic data from a perspective of image denoising. Comput Geosci. doi: 10.1007/s10596-016-9605-0 Google Scholar
  41. Macias D, Guerreiro CT, Prieto L, Peliz A, Ruiz J (2014) A high-resolution hydrodynamicbiogeochemical coupled model of the Gulf of Cadiz - Alboran Sea region. Mediterr Mar Sci 15(4):739–752Google Scholar
  42. Marty J, Chiavérini J, Pizay M, Avril B (2002) Seasonal and interannual dynamics of nutrients and phytoplankton pigments in the western Mediterranean Sea at the DYFAMED time-series station (1991–1999). Deep-Sea Res II Top Stud Oceanogr 49:1965–1985CrossRefGoogle Scholar
  43. Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875. doi: 10.1029/RG020i004p00851
  44. Miyoshi T, Kalnay E, Li H (2013) Estimating and including observation-error correlations in data assimilation. Inverse Problems in Science and Engineering 21(3):387–398CrossRefGoogle Scholar
  45. Morel A, André J-M, Andre J-M (1991) Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J Geophys Res. doi: 10.1029/95JC00466 Google Scholar
  46. Moutin T, Raimbault P (2002) Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise). J Mar Syst 33-34:273–288. doi: 10.1016/S0924-7963(02)00062-3 CrossRefGoogle Scholar
  47. Nerger L, Danilov S, Hiller W, Schroter J (2006) Using sea-level data to constrain a finite-element primitive-equation ocean model with a local SEIK filter. Ocean Dynam 56:634–649CrossRefGoogle Scholar
  48. Nerger L, Gregg WW (2007) Assimilation of SeaWiFS data into a global ocean-biogeochemical model using a local SEIK filter. J Mar Syst 68:237–254. doi: 10.1016/j.jmarsys.2006.11.009 CrossRefGoogle Scholar
  49. Nittis K, Perivoliotis L, Korres G, Tziavos C, Thanos I (2006) Operational monitoring and forecasting for marine environmental applications in the Aegean Sea. Environ Model Softw 21:243–257CrossRefGoogle Scholar
  50. O’Reilly JE, Maritorena S, Mitchell BG, Siegel DA, Carder KL, Garver SA, Kahru M, Reilly MO, Maritorena JE, Mitchell S, Siegel BG, Carder DA, Garver KL, Kahru SA, McClain C (1998) Ocean color chlorophyll algorithms for SeaWiFS. J Geophys Res 103:24937. doi: 10.1029/98JC02160 CrossRefGoogle Scholar
  51. Papadopoulos A, Kallos G, Katsafados P, Nickovic S (2002) The Poseidon weather forecasting system: an overview. The Global Atmosphere and Ocean Systems 8:219–237 (retitled Journal of Atmospheric and Ocean Science). CrossRefGoogle Scholar
  52. Pätsch J, Radach G (1997) Long-termsimulation of the eutrophication of the North Sea: temporal development of nutrients, chlorophyll and primary production in comparison to observations. J Sea Res 1101Google Scholar
  53. Petihakis G, Triantafyllou G, Allen IJ, Hoteit I, Dounas C (2002) Modelling the spatial and temporal variability of the Cretan Sea ecosystem. J Mar Syst 36(3–4):173–196CrossRefGoogle Scholar
  54. Petihakis G, Tsiaras K, Triantafyllou G, Kalaroni S, Pollani A (2014) Sensitivity of the N. Aegean Sea ecosystem to Black Sea Water inputs Mediterr Mar Sci:790–804Google Scholar
  55. Pham D (2001) Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon Weather Rev:1194–1207Google Scholar
  56. Simon E, Bertino L (2009) Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: A twin experiment. Ocean Sci 5(4):495–510Google Scholar
  57. Song H, Hoteit I, Cornuelle BD, Subramanian AC (2010) An adaptive approach to mitigate background covariance limitations in the ensemble Kalman filter. Mon Weather Rev 138(7):2825–2845CrossRefGoogle Scholar
  58. Stow, C.a., Jolliff, J., McGillicuddy, D.J., Doney, S.C., Allen, J.I., Friedrichs, M.A.M., Rose, K.A., Wallhead, P., (2009) Skill assessment for coupled biological/physical models ofmarine systems. J Mar Syst 76, 4–15. http://dx.doi.org/ 10.1016/j.jmarsys.2008.03.011
  59. Teruzzi A, Dobricic S, Solidoro C, Cossarini G (2014) A 3-D variational assimilation scheme in coupled transport-biogeochemical models: Forecast of Mediterranean biogeochemical properties. J Geophys Res Ocean 119:200–217. doi: 10.1002/2013JC009277
  60. Triantafyllou G, Hoteit I, Petihakis G (2003) A singular evolutive interpolated Kalman filter for efficient data assimilation in a 3D complex physical-biogeochemical model of the Cretan Sea. J Mar Syst 40-41:213–231CrossRefGoogle Scholar
  61. Triantafyllou G et al (2005) Ecosystem modeling and data assimilation of physical-biogeochemical processes in shelf and regional areas of the Mediterranean Sea. App Num Anal Comp Math 2:262–280CrossRefGoogle Scholar
  62. Triantafyllou G et al (2007) Assimilation of ocean colour data into a Biochemical Flux Model of the Eastern Mediterranean Sea. Ocean Sci 3:397–410CrossRefGoogle Scholar
  63. Triantafyllou G, Yao F, Petihakis G et al (2014) Exploring the Red Sea seasonal ecosystem functioning using a three-dimensional biophysical model. J Geophys Res-Oceans 119:1791–1811. doi: 10.1002/2013jc009641 CrossRefGoogle Scholar
  64. Tsiaras, K., Korres, G., Petihakis, G., Nittis, K., Raitsos, D., Pollani A., Triantafyllou, G., (2010) The Poseidon ecosystem model: the Mediterranean case. Proceedings of the 5th International Conference of EuroGOOS, EuroGOOS publication n. 28, ISBN 978–91–974828-6-8: 191–198.Google Scholar
  65. Tsiaras KP, Petihakis G, Kourafalou VH, Triantafyllou G (2014) Impact of the river nutrient load variability on the North Aegean ecosystem functioning over the last decades. J Sea Res 86:97–109. doi: 10.1016/j.seares.2013.11.007 CrossRefGoogle Scholar
  66. Tugrul S, Besiktepe ST, Salihoglou I (2002) Nutrient exchange fluxes between the Aegean and Black Seas through the Marmara Sea. Mediterr Mar Sci 3:33–42CrossRefGoogle Scholar
  67. Ueno G, Nakamura N (2014) Iterative algorithm for maximum-likelihood estimation of the observation-error covariance matrix for ensemble-based filters. Q J R Meteorol Soc 140(678):295–315CrossRefGoogle Scholar
  68. Wang X, Barker DM, Snyder C, Hamill TM (2008) A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: real observation experiments. Mon Weather Rev 136:5132–5147CrossRefGoogle Scholar
  69. Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Weather Rev 130:1913–1924CrossRefGoogle Scholar
  70. Xu FH, Oey LY, Miyazawa Y, Hamilton P (2013) Hindcasts and forecasts of Loop Current and eddies in the Gulf of Mexico using local ensemble transform Kalman filter and optimum-interpolation assimilation schemes. Ocean Model 69:22–38CrossRefGoogle Scholar
  71. Zavatarelli M, Mellor GL (1995) A numerical study of the Mediterranean Sea circulation. J Phys Oceanogr 25(6):1384–1414CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Kostas P. Tsiaras
    • 1
    Email author
  • Ibrahim Hoteit
    • 2
  • Sofia Kalaroni
    • 1
  • George Petihakis
    • 3
  • George Triantafyllou
    • 1
  1. 1.Hellenic Centre for Marine ResearchAtticaGreece
  2. 2.King Abdullah University of Sciences and TechnologyThuwalSaudi Arabia
  3. 3.Hellenic Centre for Marine ResearchIraklioGreece

Personalised recommendations