Skip to main content
Log in

A study case of bioluminescence potential dynamics in the Delaware Bay with observations and modeling

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Results from first observational program of bioluminescence (BL) potential in the Delaware Bay area are presented. During the field program July 30–August 1, 2015, the satellite Visible Infrared Imaging Radiometer Suite (VIIRS) imagery shows the development of the submesoscale filament with elevated chlorophyll-a in the area of interaction of lighter water masses of the Bay outflow with denser upwelled water. We have shown that ageostrophic secondary circulation (ASC) cells contributed to the development of this filament. Analysis of BL potential observations have shown elevated values of BL potential in the area of the submesoscale filament. Analysis of observed temperature, salinity, sigma-t, and BL potential along the stations crossing the Bay mouth have shown a presence of a strong frontal structure separating colder, more saline, denser offshore water from the bay water masses. Over 3 days of sampling, this frontal structure moved onshore to the entrance of the bay, and brought offshore BL plankton communities with higher values of BL potential. We compared two surveys (at the end of July and in the middle of August) of water masses located in the area where the buoyant outflow of the Delaware Coastal Current is turned around and taken to the north up the shelf by upwelling favorable winds. Analysis of observations shows that the survey at the end of July has fresher water masses (due to higher river runoff before and during survey) and higher values of BL potential in comparison to the survey at the middle of August.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arnone R, Fargion G, Martinolich P et al. (2012) “Validation of the VIIRS ocean color”, Proc. SPIE 8372, Ocean sensing and monitoring IV, 83720G, doi:10.1117/12.922949

  • Calil PHR, Richards KJ (2010) Transient upwelling hot spots in the oligotrophic North Pacific. J Geophys Res 115:C02003. doi:10.1029/2009JC005360

    Article  Google Scholar 

  • Chassignet EP, Hurlburt HE, Metzger EJ, Smedstad OM, Cummings J, Halliwell GR, Bleck R, Baraille R, Wallcraft AJ, Lozano C, Tolman HL, Srinivasan A, Hankin S, Cornillon P, Weisberg R, Barth A, He R, Werner F, Wilkin J (2009) U.S. GODAE: global ocean prediction with the HYbrid Coordinate Ocean model (HYCOM). Oceanography 22(2):64–75

    Article  Google Scholar 

  • Cronin HA, Cohen JH, Berge J, Johnsen G, Moline MA (2016) Bioluminescence as an ecological factor during high Arctic polar night. Sci Rep 6:36374. doi:10.1038/srep36374

    Article  Google Scholar 

  • Cummings JA (2005) Operational multivariate ocean data assimilation. Q J R Meteorol Soc 131:3583–3604. doi:10.1256/qj.05.105

    Article  Google Scholar 

  • Egbert GD, Erofeeva SY (2002) Efficient inverse modeling of barotropic ocean tides. J Atmos Ocean Technol 19:183–204

    Article  Google Scholar 

  • Feng Y, Zhang Y, Hutchins DA (2007) Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware inland bays and Delaware Bay. Hydrobiologia 589:127–139. doi:10.1007/s10750-007-0730-6

    Article  Google Scholar 

  • Flather RA (1976) A tidal model of the northwest European continental shelf. Memorie Societa Real Scienze Liege 6:141–164

    Google Scholar 

  • Fong DA, Geyer WR (2001) The response of a river plume during an upwelling favorable event. J Geophys Res 106:1055–1062

    Article  Google Scholar 

  • Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493

    Article  Google Scholar 

  • Herren CM, Haddock SHD, Johnson C, Orrico CM, Moline MA, Case JF (2005) A multi-platform bathyphotometer for fine-scale, coastal bioluminescence research. Limnol Oceanogr Methods 3:247–262

    Article  Google Scholar 

  • Hoskins BJ (1982) The mathematical theory of frontogenesis. Annu Rev Fluid Mech 14:131–151. doi:10.1146/annurev.fl.14.010182.001023

    Article  Google Scholar 

  • Houghton RW, Tilburg CE, Garvine RW, Fong A (2004) Delaware River plume response to a strong upwelling-favorable wind event. Geophys Res Lett 31:L07302. doi:10.1029/2003GL018988

    Article  Google Scholar 

  • Hu C, Lee Z, Franz BA (2012) Chlorophyll-a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. J Geophys Res 117:C01011. doi:10.1029/2011JC007395

    Google Scholar 

  • Joesoef A, Huang W-J, Gao Y, Cai W-J (2015) Air–water fluxes and sources of carbon dioxide in the Delaware estuary: spatial and seasonal variability. Biogeosciences 12:6085–6101. doi:10.5194/bg-12-6085-2015

    Article  Google Scholar 

  • Johnsen G, Candeloro M, Berge J, Moline MA (2014) Glowing in the dark: discriminating patterns of bioluminescence from different taxa during the Arctic polar night. Polar Biol 37:707–713

    Article  Google Scholar 

  • Kara AB, Rochford PA, Hurlburt HE (2003) Mixed layer depth variability over the global ocean. J Geophys Res 108(C3):3079. doi:10.1029/2000JC000736

    Article  Google Scholar 

  • Kundu PK (1976) Ekman veering observed near the ocean bottom. J Phys Oceanogr 6:238–242

    Article  Google Scholar 

  • Ladner S, Arnone R, Martinolich P et al. (2014) Inter-satellite comparison and evaluation of navy SNPP-VIIRS and MODIS aqua ocean color properties. Proc. SPIE 9111, Ocean Sensing and Monitoring VI, 911107. doi:10.1117/12.2053060

  • Lee ZP, Darecki M, Carder KL, Davis CO, Stramski D, Rhea WJ (2005) Diffuse attenuation coefficient of downwelling irradiance: an evaluation of remote sensing methods. J Geophys Res 110:C02017. doi:10.1029/2004JC002573

    Article  Google Scholar 

  • Lee ZP, Weidemann A, Kindle J, Arnone R, Carder KL, Davis C (2007) Euphotic zone depth: its derivation and implication to ocean color remote sensing. J Geophys Res 112:C03009. doi:10.1029/2006JC003802

    Google Scholar 

  • Levy M, Ferrari R, Franks PJS, Martin AP, Rivière P (2012) Bringing physics to life at the submesoscale. Geophys Res Lett 39:L14602. doi:10.1029/2012GL052756

    Google Scholar 

  • Marcinko CLJ, Painter SC, Martin AP, Allen JT (2013) A review of the measurement and modelling of dinoflagellate bioluminescence. Prog Oceanogr 109:117–129

    Article  Google Scholar 

  • Marcinko CLJ, Martin AP, Allen JT (2014) Modelling dinoflagellates as an approach to the seasonal forecasting of bioluminescence in the North Atlantic. J Mar Syst 139:261–276. doi:10.1016/j.jmarsys.2014.06.014

    Article  Google Scholar 

  • Metzger EJ, Smedstad OM, Thoppil PG, Hurlburt HE, Cummings JA, Wallcraft AJ, Zamudio L, Franklin DS, Posey PG, Phelps MW, Hogan PJ, Bub FL, DeHaan CJ (2014) US navy operational global ocean and Arctic ice prediction systems. Oceanography 27(3):32–43 http://dx.doi.org/10.5670/oceanog.2014.66

    Article  Google Scholar 

  • Moline MA, Blackwell SM, Allen B, Austin T, Forrester N, Goldsborogh R, Purcell M, Stokey R, von Alt C (2005) Remote environmental monitoring units: an autonomous vehicle for characterizing coastal environments. J Atmos Ocean Technol 22:1798–1809

    Article  Google Scholar 

  • Moline MA, Blackwell SM, Case JF, Haddock SHD, Herren CM, Orrico CM, Terrill E (2009) Bioluminescence to reveal structure and interaction of coastal planktonic communities. Deep-Sea Res 56:232–245. doi:10.1016/j.dsr2.2008.08.002

  • Moline MA, Benoit-Bird KJ, Robbins IC, Schroth-Miller M, Waluk CM, Zelenke B (2010) Integrated measurements of acoustical and optical thin layers II: horizontal length scales. Cont Shelf Res 30:29–38. doi:10.1016/j.csr.2009.08.004

    Article  Google Scholar 

  • Moline, M. A., M. Oliver, C. Orrico, R. Zaneveld, I. Shulman (2013) Bioluminescence in the sea. Book Chapter 7. Subsea Optics and Imaging, Woodhead Publishing, 134–170. doi:10.1533/9780857093523.2.134

  • Muscarella PA, Barton NP, Lipphardt BL Jr, Veron DE, Wong K-C, Kirwan AD Jr (2011) Surface currents and winds at the Delaware Bay mouth. Cont Shelf Res 31:1282–1293

    Article  Google Scholar 

  • Ondercin DG, Atkinson CA, Kiefer DA (1995) The distribution of bioluminescence and chlorophyll during the late summer in the North-Atlantic—maps and a predictive model. J Geophys Res Oceans 100:6575–6590

    Article  Google Scholar 

  • Pennock JR, Sharp JH (1986) Phytoplankton production in the Delaware estuary: temporal and spatial variability. Mar Ecol Prog Ser 34:143–155

    Article  Google Scholar 

  • Pollard RT, Regier LA (1992) Vorticity and vertical circulation at an ocean front. J Phys Oceanogr 22(6):609–625

    Article  Google Scholar 

  • Rudnick DL (1996) Intensive surveys of the Azores front. Part II: inferring the geostrophic and vertical velocity fields. J Geophys Res 101:16291–16303

    Article  Google Scholar 

  • Sanders TM, Garvine RW (2001) Fresh water delivery to the continental shelf and subsequent mixing: an observational study. J Geophys Res 106(C11):27087–27101

    Article  Google Scholar 

  • Shulman I, Anderson S, Rowley C, deRada S, Doyle J, Ramp S (2010) Comparisons of upwelling and relaxation events in the Monterey Bay area. J Geophys Res 115:C06016. doi:10.1029/2009JC005483

    Article  Google Scholar 

  • Shulman I, Moline MA, Penta B, Anderson S, Oliver M, Haddock SHD (2011) Observed and modeled bio-optical, bioluminescent, and physical properties during a coastal upwelling event in Monterey Bay, California. J Geophys Res 116:C01018. doi:10.1029/2010JC006525

    Article  Google Scholar 

  • Shulman I, Penta B, Moline MA, Haddock SHD, Anderson S, Oliver M, Sakalaukus P (2012) Can vertical migrations of dinoflagellates explain observed bioluminescence patterns during an upwelling event? J Geophys Res 117:C01016. doi:10.1029/2011JC007480

    Article  Google Scholar 

  • Shulman I, Penta B, Richman J et al. (2015) Impact of submesoscale processes on dynamics of phytoplankton filaments, J Geophys Res Oceans, 120, doi:10.1002/2014JC010326

  • Wang Z, Haidvogel D, Bushek D, Ford S, Hofmann EE, Powell EN, Wilkin J (2012) Circulation and water properties and their relationship to the oyster disease MSX in Delaware Bay. J Mar Res 70:279–308

    Article  Google Scholar 

  • Whitney MM, Garvine RW (2005) Wind influence on a coastal buoyant outflow. J Geophys Res 110:C03014. doi:10.1029/2003JC002261

    Article  Google Scholar 

  • Whitney MM, Garvine RW (2006) Simulating the Delaware buoyant outflow: comparison to observations. J Phys Oceanogr 36:3–21

    Article  Google Scholar 

  • Widder EA (2010) Bioluminescence in the ocean: origins of biological, chemical and ecological diversity. Science 328:704

    Article  Google Scholar 

  • Widder EA, Johnsen S (2000) 3D spatial patterns of bioluminescent plankton: a map of the “minefield”. J Plankton Res 22:409–420

    Article  Google Scholar 

  • Wilks DS (1995) Statistical methods in the atmospheric sciences, 467 pp. Academic, San Diego

    Google Scholar 

Download references

Acknowledgements

This research was funded through the US Naval Research Laboratory under program element 61153N and grants N0001415WX01395, N0001416WX01092, N00014-14-1-0841, and N00015-15-1-2624 sponsored by the Office of Naval Research, Littoral Geosciences and Optics program. We thank Adam Lawson for help with processing satellite imagery, and we thank Brent Bartels of QinetiQ North America for help with the computer code estimating Q vector. We thanks Hunter C. Brown, Danielle Haulsee, Matt Breece, Megan Cimino, and Jason Moline for assistance in measurements and Kevin Beam for captaining the R/V Daiber. We thank anonymous reviewers for providing very insightful comments and recommendations to improve the paper. Computer time for the numerical simulations was provided through a grant from the Department of Defense High Performance Computing Initiative. Request for access to the data presented in this paper can be sent to igor.shulman@nrlssc.navy.mil. This manuscript is US NRL contribution 7330-16-3187.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Shulman.

Additional information

Responsible Editor: Alejandro Orfila

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shulman, I., Moline, M.A., Anderson, S. et al. A study case of bioluminescence potential dynamics in the Delaware Bay with observations and modeling. Ocean Dynamics 67, 383–396 (2017). https://doi.org/10.1007/s10236-017-1045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-017-1045-4

Keywords

Navigation