Ocean Dynamics

, Volume 66, Issue 11, pp 1517–1527 | Cite as

Surface suspended particulate matter concentration in the Taiwan Strait during summer and winter monsoons

  • Jason C. S. YuEmail author
  • Tzu-Yin Chou
  • Hao-Cheng Yu
  • Peihung Chen
  • Quinten Vanhellemont
  • Michael Fettweis
Part of the following topical collections:
  1. Topical Collection on the 13th International Conference on Cohesive Sediment Transport in Leuven, Belgium 7-11 September 2015


The Taiwan Strait (TS), situated between Taiwan and China, is shallow, relatively turbid, and characterized by strong tidal currents and winter and summer monsoon seasons. The aim of this study was to use images from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua satellite to investigate how local sediment sources in addition to the seasonality in wind, oceanographic currents, and waves influence the suspended particulate matter (SPM) dynamics in the TS. In winter, northeast (NE) winds drive the China Coastal Current southward. Cold water with a high SPM concentration is transported southward into the Strait. After the highest SPM concentration reaches its peak in December and January, the winds weaken and the SPM concentration decreases. During summer, winds are less strong and SPM concentration is lower. Although typhoons typically occur in summer, they generate only a weak signal in the surface SPM concentration data from MODIS because of the low number of cloud-free images during these periods. Typhoons result in a short-term increase in the SPM concentration but do not strongly influence the seasonal values in the satellite-derived SPM concentration maps.


Suspended particulate matters Monsoon Seasonal variation Taiwan Strait 



Part of this research is supported by the Ministry of Science and Technology (MOST105-2221-E-110-002). T.Y. Chou visited RBINS with a 2015 student abroad training fund granted by the Ministry of Education. M. Fettweis visited NSYSU with MOST and NSYSU scholar exchange funds. Part of the ocean seurface current data were retrieved 2015–05-07, from HYCOM HYCOM + NCODA Global 2015 1/12° reanalysis (GLBu0.08/expt_19.1).


  1. Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC, Smith DK, Gombos D (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92:157–174. doi: 10.1175/2010BAMS2946.1 CrossRefGoogle Scholar
  2. Bai Y, Huang T-H, He X, Wang S-L, Hsin Y-C, Wu C-R, Lui H-K, Chen C-TA (2015) Intrusion of the Pearl River plume into the main channel of the Taiwan Strait in summer. J Sea Res 95:1–15. doi: 10.1016/j.seares.2014.10.003 CrossRefGoogle Scholar
  3. Chen CTA, Wang S-L (2006) A salinity front in the southern East China Sea separating the Chinese coastal and Taiwan Strait waters from Kuroshio waters. Cont Shelf Res 26:1636–1653. doi: 10.1016/j.csr.2006.05.003 CrossRefGoogle Scholar
  4. Chien H, Chiang W-S, Cheng H-Y, Liu K-K (2011) On the resuspension of sediment in strong tidal current. Proc 33rd Ocean Eng Conf, National Kaohsiung Marine University, TaiwanGoogle Scholar
  5. Cummings JA (2006) Operational multivariate ocean data assimilation. DTIC DocumentGoogle Scholar
  6. Cummings JA, Smedstad OM (2013) Variational data assimilation for the global ocean. In: Data Assimilation for atmospheric, oceanic and hydrologic applications (Vol. II), p 303–343Google Scholar
  7. Dadson S, Hovius N, Pegg S, Dade WB, Horng M, Chen H (2005) Hyperpycnal river flows from an active mountain belt. J Geophysi Res 110:F04016. doi: 10.1029/2004JF000244 CrossRefGoogle Scholar
  8. DeMaster DJ, McKee BA, Nittrouer CA, Jiangchu Q, Guodong C (1985) Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Cont Shelf Res 4:143–158CrossRefGoogle Scholar
  9. Dogliotti AI, Ruddick KR, Nechad B, Doxaran D, Knaeps E (2015) A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens Environ 156:157–168. doi: 10.1016/j.rse.2014.09.020 CrossRefGoogle Scholar
  10. Doxaran D, Froidefond J-M, Lavender S, Castaing P (2002) Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens Environ 81:149–161. doi: 10.1016/S0034-4257(01)00341-8 CrossRefGoogle Scholar
  11. Fettweis MP, Nechad B (2011) Evaluation of in situ and remote sensing sampling methods for SPM concentrations, Belgian continental shelf (southern North Sea. Ocean Dyn 61:157–171. doi: 10.1007/s10236-010-0310-6 CrossRefGoogle Scholar
  12. Fettweis M, Monbaliu J, Baeye M, Nechad B, Van den Eynde D (2012) Weather and climate induced spatial variability of surface suspended particulate matter concentration in the North Sea and the English Channel. Meth Oceanogr 3–4:25–39. doi: 10.1016/j.mio.2012.11.001 CrossRefGoogle Scholar
  13. Fox D, Teague W, Barron C, Carnes M, Lee C (2002) The Modular Ocean Data Assimilation System (MODAS). J Atmosph Ocean Technol 19:240–252CrossRefGoogle Scholar
  14. Han B, Loisel H, Vantrepotte V, Mériaux X, Bryère P, Ouillon S, Dessailly D, Xing Q, Zhu J (2016) Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters. Remote Sens 8:211. doi: 10.3390/rs8030211 CrossRefGoogle Scholar
  15. Hoefel F, Elgar S (2003) Wave-induced sediment transport and sandbar migration. Science 299:1885–1887CrossRefGoogle Scholar
  16. Hong H, Zhang C, Shang S, Huang B, Li Y, Li X, Zhang S (2009) Interannual variability of summer coastal upwelling in the Taiwan Strait. Cont Shelf Res 29:479–484. doi: 10.1016/j.csr.2008.11.007 CrossRefGoogle Scholar
  17. Jan S, Wang J, Chern C-S, Chao S-Y (2002) Seasonal variation of the circulation in the Taiwan Strait. J Mar Syst 35:249–268. doi: 10.1016/S0924-7963(02)00130-6 CrossRefGoogle Scholar
  18. Jan S, Wang Y-H, Wang D-P, Chao S-Y (2004) Incremental inference of boundary forcing for a three-dimensional tidal model: tides in the Taiwan Strait. Cont Shelf Res 24:337–351. doi: 10.1016/j.csr.2003.11.005 CrossRefGoogle Scholar
  19. Kao SJ, Milliman JD (2008) Water and sediment discharge from small mountainous rivers, Taiwan: the roles of lithology, episodic events, and human activities. J Geol 116:431–448. doi: 10.1086/590921 CrossRefGoogle Scholar
  20. Li Y, Xu X, Yin X, Fang J, Hu W, Chen J (2015) Remote-sensing observations of typhoon Soulik (2013) forced upwelling and sediment transport enhancement in the northern Taiwan Strait international. J Remote Sens 36:2201–2218. doi: 10.1080/01431161.2015.1035407 CrossRefGoogle Scholar
  21. Liao H-R, H-S Y, C-C S (2008) Morphology and sedimentation of sand bodies in the tidal shelf sea of eastern Taiwan Strait. Mar Geol 248:161–178. doi: 10.1016/j.margeo.2007.10.013 CrossRefGoogle Scholar
  22. Lin M-C, Juang W-J, Tsay T-K (2000) Applications of the mild-slope equation to tidal computations in the Taiwan Strait. J Oceanogr 56:625–642CrossRefGoogle Scholar
  23. Liu JT, Lin H-L, Hung J-J (2006) A submarine canyon conduit under typhoon conditions off southern Taiwan. Deep Sea Res I 53:223–240. doi: 10.1016/j.dsr.2005.09.012 CrossRefGoogle Scholar
  24. Liu Z, Tuo S, Colin C, Liu JT, Huang CY, Selvaraj K, Chen CTA, Zhao Y, Siringan FP, Boulay S, Chen Z (2008) Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Mar Geol 255:149–155. doi: 10.1016/j.margeo.2008.08.003 CrossRefGoogle Scholar
  25. Milliman JD, Kao SJ (2005) Hyperpycnal discharge of fluvial sediment to the ocean: impact of super-typhoon herb (1996) on Taiwanese rivers. J Geology 113:503–516CrossRefGoogle Scholar
  26. Milliman JD, Meade RH (1983) World-wide delivery of river sediment to the oceans. J Geol 91:1–21CrossRefGoogle Scholar
  27. NASA/GSFC/NOAA (2009) Cross-calibrated multi-platform ocean surface wind vector L3.0 first-look analyses. Ver. 1. PO.DAAC, CA, USA. Dataset accessed [2015–04-21] at  10.5067/CCF30-01XXX
  28. Nechad B, Ruddick K, Park Y (2010) Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens Environ 114:854–866. doi: 10.1016/j.rse.2009.11.022 CrossRefGoogle Scholar
  29. Patt FS, Barnes R, Eplee R, Franz B, Robinson W (2003) Algorithm updates for the fourth SeaWiFS data reprocessing. NASA Technical Memorandum, 22Google Scholar
  30. Qiu Y, Li L, Chen CA, Guo X, Jing C (2011) Currents in the Taiwan Strait as observed by surface drifters. J Oceanogr 67:395. doi: 10.1007/s10872-011-0033-4 CrossRefGoogle Scholar
  31. Schoellhamer DA (2002) Variability of suspended-sediment concentration at tidal to annual time scales in San Francisco Bay, USA. Cont Shelf Res 22:1857–1866. doi: 10.1016/S0278-4343(02)00042-0 CrossRefGoogle Scholar
  32. Song GS, Chen MP (1992) Grain size distributions and depositional processes in northern Taiwan Strait Hsin-Chu offshore area. Acta Oceanogr Taiwanica 13:84–108Google Scholar
  33. Vanhellemont Q, Ruddick K (2011) Generalized satellite image processing: eight years of ocean colour data for any region on Earth. Proc SPIE 8175:81750Q. doi: 10.1117/12.898300 CrossRefGoogle Scholar
  34. Vanhellemont Q, Nechad, B, Ruddick, K (2011) GRIMAS: gridding and archiving of satellite-derived ocean colour data for any region on Earth. In: Longhorn R et al (eds) CoastGIS 5–8 September 2011 Oostende, Belgium, p 26–27Google Scholar
  35. Wang YH, Jan S, Wang DP (2003) Transports and tidal current estimates in the Taiwan Strait from shipboard ADCP observations (1999–2001). Estuar Coast Shelf Sci 57:193–199. doi: 10.1016/S0272-7714(02)00344-X CrossRefGoogle Scholar
  36. Wang P, Li Q, Li C-F (2014) Sedimentalogy. Geology of the China Seas, 1st edition. Elsevier. 301 ppGoogle Scholar
  37. WRA (2016) Statistic of water resources. Water Resources Agency, Ministry of Economic Affairs. Accessed 20 Jan 2016
  38. Xu K, Milliman JD, Li A, Liu JP, Kao S-J, Wan S (2009) Yangtze-and Taiwan-derived sediments on the inner shelf of East China Sea. Cont Shelf Res 29:2240–2256. doi: 10.1016/j.csr.2009.08.017 CrossRefGoogle Scholar
  39. Yu H-C, Yu C-S, Chu C-H, Teyr T-C (2014) A regional ocean current forecast operational system for the sea around Taiwan. In: EGU Conf, 27 April–2 May, Vienna 5613Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jason C. S. Yu
    • 1
    Email author
  • Tzu-Yin Chou
    • 1
  • Hao-Cheng Yu
    • 1
  • Peihung Chen
    • 1
  • Quinten Vanhellemont
    • 2
  • Michael Fettweis
    • 2
  1. 1.Department of Marine Environment and EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan
  2. 2.Royal Belgian Institute of Natural Sciences, Operational Directorate Natural EnvironmentBrusselsBelgium

Personalised recommendations