Ocean Dynamics

, Volume 66, Issue 10, pp 1301–1315 | Cite as

Changes of storm surges in the Bohai Sea derived from a numerical model simulation, 1961–2006

  • Jianlong Feng
  • Hans von Storch
  • Ralf Weisse
  • Wensheng Jiang


Using the tide-surge circulation model ADCIRC, the storm surges in the Bohai Sea were hindcasted from 1961 to 2006 after a regional model-based reconstruction of wind conditions. Through comparison with four storm surge cases that happened in the Bohai Sea and long-time observations at four tide gauges in the Yellow Sea, it is concluded that the model is capable of reproducing the conditions of storm surges in the past few decades in this area. The spatial distribution, the seasonal variation, the interdecadal variability, and the long-time trend were analyzed using the model results. Results show that the storm surges in the three bays of the Bohai Sea are more serious than those in other areas. The storm surges exhibit obvious seasonal variations—they are more serious in spring and autumn. Obvious interdecadal variations and long-time decreasing trends take place in the Bohai Sea. Storm surge indices show statistically significant negative correlations to the Arctic Oscillation (AO) and a statistically significant positive correlation to the Siberian High (SH). Linear regression analysis was used to determine a robust link between the indices of the storm surges and the AO and SH. Using this link, conditions of the storm surges from 1900 to 2006 were estimated from the long-time AO and SH.


Storm surge Bohai Sea Hindcast Climate change 



We sincerely express our thanks to the developers of the ADCIRC model. This work is supported by the China Scholarship Council (No. 201306330027) and Public science and technology research funds projects of ocean (201305020-4), and we also really appreciate the support from Shanhong Gao for providing the wind fields. JF also thanks for the Helmholtz-Zentrum Geesthacht for hospitality during a 24-month visit and for the provision of computing facilities during the time this work was carried out.


  1. Bacopoulos P, Dally WR, Hagen SC, Cox AT (2012) Observations and simulation of winds, surge, and currents on Florida’s east coast during hurricane Jeanne (2004). Coast Eng 60:84–94. doi: 10.1016/j.coastaleng.2011.08.010 CrossRefGoogle Scholar
  2. Barcikowska M, Feser F, Von Storch H (2012) Usability of best track data in climate statistics in the western North Pacific. Mon Weather Rev 140:2818–2830. doi: 10.1175/MWR-D-11-00175.1 CrossRefGoogle Scholar
  3. Bernier NB, Thompson KR (2006) Predicting the frequency of storm surges and extreme sea levels in the Northwest Atlantic. J Geophys Res Oceans 111:C100009. doi: 10.1029/2005JC003168 CrossRefGoogle Scholar
  4. Blain CA, Westerink JJ, Luettich RA (1998) Grid convergence studies for the prediction of hurricane storm surge. Int J Numer Methods Fluids 26:369–401. doi: 10.1002/(SICI)10970363(19980228)26:4<369::AID-FLD624>3.0.CO;2-0 CrossRefGoogle Scholar
  5. Bromirski PD, Flick RE, Canyan DR (2003) Storminess variability along the California coast: 1858–2000. J Clim 16:982–993. doi: 10.1175/1520-0442(2003)016<0982:SVATCC>2.0.CO;2 CrossRefGoogle Scholar
  6. Church JA, White NJ (2006) A twentieth century acceleration in global sea-level rise. Geophys Res Lett 33:L01602. doi: 10.1029/2005GL024826 CrossRefGoogle Scholar
  7. Conte D, Lionello P ((2013)) Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Glob Planet Chang 111:159–173. doi: 10.1016/j.gloplacha.2013.09.006 CrossRefGoogle Scholar
  8. David W. J. Thompson, John M. Wallace, (1998) The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophysical Research Letters 25 (9):1297-1300Google Scholar
  9. Ding Y (1990) Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteorog Atmos Phys 44:281–292. doi: 10.1007/BF01026822 CrossRefGoogle Scholar
  10. Ding Y, Krishnamurti TN (1987) Heat budget of the Siberian high and the winter monsoon. Mon Weather Rev 115:2428–2449. doi: 10.1175/1520-0493(1987)115<2428:HBOTSH>2.0.CO;2 CrossRefGoogle Scholar
  11. Ebersole BA, Westerink JJ, Bunya S, Dietrich JC, Cialone MA (2010) Development of storm surge which led to flooding in St. Bernard Polder during Hurricane Katrina. Ocean Eng 37:91–103. doi: 10.1016/j.oceaneng.2009.08.013 CrossRefGoogle Scholar
  12. Egbert GD, Bennett AF, Foreman GG (1994) TOPEX/POSEIDON tides estimated using a global inverse model. J Geophys Res 99(24):821–852. doi: 10.1029/94JC01894 Google Scholar
  13. Feng S (1982) Introduction to storm surge. Science Press, Beijing, p. 241 in ChineseGoogle Scholar
  14. Feng X, Yin B, Yang D (2012) Effect of hurricane paths on storm surge response at Tianjin, China. Estuar Coast Shelf Sci 106:58–68. doi: 10.1016/j.ecss.2012.04.032 CrossRefGoogle Scholar
  15. Feng J, Jiang W, Bian C (2014) Numerical prediction of storm surge in the Qingdao area under the impact of climate change. J Ocean Univ China 13:539–551. doi: 10.1007/s11802-014-2222-4 CrossRefGoogle Scholar
  16. Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:L6801. doi: 10.1029/2012GL051000 CrossRefGoogle Scholar
  17. Gong DY, Ho CH (2002) The Siberian High and climate change over middle to high-latitude Asia. Theor Appl Climatol 72:1–9. doi: 10.1007/s007040200008 CrossRefGoogle Scholar
  18. Gong D, Wang S (1999) Long-term variability of the Siberian High and the possible connection to global warming. Acta Geograph Sin 54:125–133Google Scholar
  19. Gönnert G, Dube SK, Murty T, Siefert W (2001) Global storm surge: theory, observation and modeling. Die küste 63:623Google Scholar
  20. Gregory JM, Martyn PC, Mark CS (2001) Trends in Northern Hemisphere surface cyclone frequency and intensity. J Clim 14(12):2763–2768. doi: 10.1175/1520-0442(2001)014<2763:TINHSC>2.0.CO;2 CrossRefGoogle Scholar
  21. Hallegatte S (2007) The use of synthetic hurricane tracks in risk analysis and climate change damage assessment. J Appl Meteorol Climatol 46:1959–1966. doi: 10.1175/2007JAMC1532.1 CrossRefGoogle Scholar
  22. Hans von Storch, Francis W. Zwiers (1999) Statistical Analysis in Climate Research. Cambridge University Press,LondonGoogle Scholar
  23. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi: 10.1029/2010RG000345 CrossRefGoogle Scholar
  24. H von Storch, Jiang W, Furmancyk KK (2015) Storm surge case studies. In J. Ellis and D. Sherman (eds): Coastal and Marine Natural Hazards and Disasters, Elsevier, AmsterdamGoogle Scholar
  25. Jeong J, Ou T, Linderholm HW, Kim B, Kim B, Kug J, Chen D (2011) Recent recovery of the Siberian High intensity. Journal of Geophysical Research: Atmospheres 116:D23102. doi: 10.1029/2011JD015904 Google Scholar
  26. Jones PD (1995) Land surface temperatures—is the network good enough? Climate Change 31:545–558. doi: 10.1007/BF01095161 CrossRefGoogle Scholar
  27. Jr RAL, Westerink JJ (1991) A solution for the vertical variation of stress, rather than velocity, in a three-dimensional circulation model. Int J Numer Methods Fluids 12:911–928. doi: 10.1002/fld.1650121002 CrossRefGoogle Scholar
  28. Kang SK, Cherniawsky JY, Foreman MGG, So J, Lee SR (2008) Spatial variability in annual sea level variations around the Korean peninsula. Geophys Res Lett 35:L3603. doi: 10.1029/2007GL032527 CrossRefGoogle Scholar
  29. Karl TR, Quayle RG, Groisman PY (1993) Detecting climate variations and change: new challenges for observing and data management systems. J Clim 6:1481–1494. doi: 10.1175/1520-0442(1993)006<1481:DCVACN>2.0.CO;2 CrossRefGoogle Scholar
  30. Kulkarni A, von Storch H (1995) Monte Carlo experiments on the effect of serial correlation on the Mann-Kendall-test of trends. Meteor Z 4 :82–85NFGoogle Scholar
  31. Langenberg H, Pfizenmayer A, von Storch H, Sündermann J (1999) Storm related sea level variations along the North Sea coast: natural variability and anthropogenic change. Cont Shelf Res 19:821–842. doi: 10.1016/S0278-4343(98)00113-7 CrossRefGoogle Scholar
  32. Li X (1955) A study of cold waves in East Asia, offprints of scientific works in modern China-meteorology (1919–1949) (in Chinese). Science Press, BeijingGoogle Scholar
  33. Marcos M, Tsimplis MN, Shaw AGP (2009) Sea level extremes in southern Europe. Journal of Geophysical Research: Oceans 114:C01007. doi: 10.1029/2008jc004912 CrossRefGoogle Scholar
  34. Mattocks C, Forbes C (2008) A real-time, event-triggered storm surge forecasting system for the state of North Carolina. Ocean Model 25:95–119. doi: 10.1016/j.ocemod.2008.06.008 CrossRefGoogle Scholar
  35. Méndez FJ, Menéndez M, Luceño A, Losada IJ (2007) Analyzing monthly extreme sea levels with a time-dependent GEV model. J Atmos Ocean Technol 24:894–911. doi: 10.1175/JTECH2009.1 CrossRefGoogle Scholar
  36. Menéndez M, Woodworth PL (2010) Changes in extreme high water levels based on a quasi-global tide-gauge data set. Journal of Geophysical Research: Ocean 115:C10011. doi: 10.1029/2009JC005997 CrossRefGoogle Scholar
  37. Meng XJ, Wu FZ, Du HB, Wang B (2013) Spatio-temporal characteristics of cold wave over Northeast China during 1961-2010. Journal of Arid Land Resources and Environment 27(1):142–147 Chinese in English abstractGoogle Scholar
  38. Mudersbach C, Wahl T, Haigh ID, Jensen J (2013) Trends in high sea levels of German North Sea gauges compared to regional mean sea level changes. Cont Shelf Res 65:111–120. doi: 10.1016/j.csr.2013.06.016 CrossRefGoogle Scholar
  39. Palumbo A, Mazzarella A (1982) Mean sea level variations and their practical applications. Journal of Geophysical Research 87 (C6):4249Google Scholar
  40. Pascual A, Marcos M, Gomis D (2008) Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J Geophys Res Oceans 113:C07011. doi: 10.1029/2007JC004459 CrossRefGoogle Scholar
  41. Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Comput Geosci 28:929–937. doi: 10.1016/S0098-3004(02)00013-4 CrossRefGoogle Scholar
  42. Ratsimandresy AW, Sotillo MG, Carretero Albiach JC, Álvarez Fanjul E, Hajji H (2008) A 44-year high-resolution ocean and atmospheric hindcast for the Mediterranean Basin developed within the HIPOCAS Project. Coast Eng 55:827–842. doi: 10.1016/j.coastaleng.2008.02.025 CrossRefGoogle Scholar
  43. Singh OP (2001) Cause-effect relationships between sea surface temperature, precipitation and sea level along the Bangladesh coast. Theor Appl Climatol 68:233–243. doi: 10.1007/s007040170048 CrossRefGoogle Scholar
  44. Tsimplis MN, Woodworth PL (1994) The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. J Geophys Res Oceans 99:16031–16039. doi: 10.1029/94JC01115 CrossRefGoogle Scholar
  45. von Storch H, Reichardt H (1997) A scenario of storm surge statistics for the German bight at the expected time of doubled atmospheric carbon dioxide concentration. J Clim 10:2653–2662. doi: 10.1175/1520-0442(1997)010<2653:ASOSSS>2.0.CO:2 CrossRefGoogle Scholar
  46. Wang Z, Ding Y (2006) Climate change of the cold wave frequency of China in the last 53 years and the possible reasons. Chinese J Atmos Sci 30:1068–1076 in Chinese with English abstractGoogle Scholar
  47. Weisse R, von Storch H, Callies U, Chrastansky A, Feser F, Grabemann I, Günther H, Plüss A, Stoye T, Tellkamp J, Winterfeldt J, Woth K (2009) Regional meteo-marine reanalyses and climate change projections: results for Northern Europe and potentials for coastal and offshore applications. Bull Am Meteorol Soc 90:849–860. doi: 10.1175/2008BAMS2713.1 CrossRefGoogle Scholar
  48. Weisse R, Bellafiore D, Menéndez M, Méndez F, Nicholls RJ, Umgiesser G, Willems P (2014) Changing extreme sea levels along European coasts. Coast Eng 87:4–14. doi: 10.1016/j.coastaleng.2013.10.017 CrossRefGoogle Scholar
  49. Winterfeldt J, Geyer B, Weisse R (2011) Using QuickSCAT in the added value assessment of dynamically downscaled wind speed. Int J Climatol 31(7):1028–1039. doi: 10.1002/joc.2015 CrossRefGoogle Scholar
  50. Woodworth PL, Blackman DL (2003) Evidence for systematic changes in extreme high water since the mid-1970s. J Clim 17:1190–1197. doi: 10.1175/1520-0442(2004)017<1190:EFSCIE>2.0.CO;2 CrossRefGoogle Scholar
  51. Woodworth PL, Blackman DL (2004) Evidence for systematic changes in extreme high waters since the mid-1970s. J Clim 17:1190–1197. doi: 10.1175/1520-0442(2004)017<1190:EFSCIE>2.0.CO;2 CrossRefGoogle Scholar
  52. Woodworth PL, Flather RA, Williams JA, Wakelin SL, Jevrejeva S (2007) The dependence of UK extreme sea levels and storm surges on the North Atlantic Oscillation. Cont Shelf Res 27:935–946. doi: 10.1016/j.csr.2006.12.007 CrossRefGoogle Scholar
  53. Woth K, Weisse R, von Storch H (2006) Climate change and North Sea storm surge extremes: an ensemble study of storm surge extremes expected in a changed climate projected by four different regional climate models. Ocean Dyn 56:3–15. doi: 10.1007/s10236-005-0024-3 CrossRefGoogle Scholar
  54. Wu D, Gao S, Wang Y, Chen X (2011) The atlas of monthly-average wind and air temperature in the Bohai Sea, Yellow Sea and East China Sea (1960–2007). China Ocean University Press, QingdaoGoogle Scholar
  55. Yang G (2000) Historical change and future trends of storm surge disaster in China’s coast area. Journal of natural. Disaster 28:23–30Google Scholar
  56. Yin B, Hou Y, Cheng M, Su J, Lin M, Li M (2001) Numerical study of the influence of waves and tide-surge interaction on tide-surges in the Bohai Sea. Chin J Oceanol Limnol 19(2):97–102CrossRefGoogle Scholar
  57. Zhang H, Sheng J (2015) Examination of extreme sea levels due to storm surges and tide over the Northwest Pacific Ocean. Cont Shelf Res 93:81–97. doi: 10.1016/j.csr.2014.12.001 CrossRefGoogle Scholar
  58. Zhang K, Douglas BC, Leatherman SP (2000) Twentieth-century storm activity along the U.S. east coast. J Clim 13:1748–1761. doi: 10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2 CrossRefGoogle Scholar
  59. Zhang X, Walsh JE, Zhang J, Bhatt US, Ikeda M (2004) Climatology and interannual variability of Arctic Cyclone activity: 1948–2002. J Clim 17:2300–2317. doi: 10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2 CrossRefGoogle Scholar
  60. Zhang HM, Reynolds RW, Bates JJ (2006) Blended and gridded high resolution global sea surface wind speed and climatology from multiple satellites: 1987-present. American Meteorological Society 2006 Annual Meeting, Paper #P2.23, Atlanta, GA, January 29–February 2, 2006Google Scholar
  61. Zhang Y, Ding Y, Li Q (2012) Cyclogenesis frequency changes of extratropical cyclones in the North Hemisphere and East Asia revealed by ERA40 reanalysis data. Meteorological Monthly 38(6):646–656 Chinese in English abstractGoogle Scholar
  62. Zhao P, Jiang W (2011a) A numerical study of storm surges caused by cold-air outbreaks in the Bohai Sea. Nat Hazards 59:1–15. doi: 10.1007/s11069-010-9690-7 CrossRefGoogle Scholar
  63. Zhao P, Jiang W (2011b) A numerical study of the effects of coastal geometry in the Bohai Sea on storm surges induced by cold-air outbreaks. J Ocean Univ China 10(1):9–15. doi: 10.1007/s11802-011-1746-0 CrossRefGoogle Scholar
  64. Zhu Q, Lin J, Shou S, Tang D (2000) Principles and methodology of synoptic meteorology, 3rd edn. China Meteorological Press, BeijingGoogle Scholar
  65. Zou X, Alexander LV, Parker D, Caesar J (2006) Variations in severe storms over China. Geophys Res Lett 33:L17701. doi: 10.1029/2006GL026131 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Marine Data & Information ServiceTianjinChina
  2. 2.Laboratory of Marine Environment and EcologyOcean University of ChinaQingdaoChina
  3. 3.Helmholtz-Zentrum GeesthachtCentre for Materials and Coastal ResearchGeesthachtGermany
  4. 4.Physical Oceanography LaboratoryOcean University of ChinaQingdaoChina

Personalised recommendations