Skip to main content

Advertisement

Log in

Influence of bottom trawling on sediment resuspension in the ‘Grande-Vasière’ area (Bay of Biscay, France)

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

Sea trials were performed on two zones with different fishing efforts on the continental shelf of the Bay of Biscay (‘Grande-Vasière’ area of muddy sand) in order to assess particulate matter resuspension and seabed disturbances (i.e., penetration, reworking, grain size changes) induced by different types of trawls. Optical and acoustic measurements made in the water column indicate a significant trawling-induced resuspension mainly due to the scraping action of doors. It manifests as a highly dynamic turbid plume confined near the seabed, where suspended sediment concentrations can reach 200 mg l−1. Concentration levels measured behind an “alternative” configuration (trawls with jumper doors instead of classical doors penetrating the sediment) are significantly lower (around 10–20 mg l−1), which indicates a potential limiting impact regarding the seabed. Grain size analyses of the surficial sediment led to highlight a potential reworking influence of bottom trawling. On the intensively trawled zone, this reworking manifests as an upward coarsening trend in the first 5 cm of the cores. A significant decrease in mud content (30 %) has been also witnessed on this zone between 1967 and 2014, which suggests an influence on the seabed evolution. The geometric analysis of bottom tracks (4–5-cm depth, 20-cm width) observed with a benthic video sledge was used to compute an experimental trawling-induced erosion rate of 0.13 kg m−2. This erosion rate was combined with fishing effort data, in order to estimate trawling-induced erosion fluxes which were then compared to natural erosion fluxes over the Grande-Vasière at monthly, seasonal and annual scales. Winter storms control the annual resuspended load and trawling contribution to annual resuspension is in the order of 1 %. However, results show that trawling resuspension can become dominant during the fishing high season (i.e., until several times the natural one in summer). In addition, the contribution of trawling-induced resuspension is shown to increase with water depth, because of the rapid decay of wave effects. Finally, the seasonal evolution of the respective contributions for erosion (mainly trawling and waves) could be mapped for the whole study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Amos CL, Daborn GR, Christian HA et al (1992) In situ erosion measurements on fine-grained sediments from the Bay of Fundy. Mar Geol 108:175–196

    Article  Google Scholar 

  • Amos CL, Feeney T, Sutherland TF, Luternauer JL (1997) The stability of fine-grained sediments from the Fraser River Delta. Estuar Coast Shelf Sci 45:507–524

    Article  Google Scholar 

  • Barthe X, Castaing P (1989) Etude théorique de l’action des courants de marée et des houles sur les sédiments du plateau continental du Golfe de Gascogne. Oceanol Acta 12:325–334

    Google Scholar 

  • Beach RA, Sternberg RW (1988) Suspended sediment transport in the surf zone: response to cross-shore infragravity motion. Mar Geol 80:61–79

    Article  Google Scholar 

  • Boudière E, Maisondieu C, Ardhuin F et al (2013) A suitable metocean hindcast database for the design of Marine energy converters. Int J Mar Energy 3–4:e40–e52. doi:10.1016/j.ijome.2013.11.010

    Article  Google Scholar 

  • Bourillet J-F, Dubrulle C, Goubert E et al (2005) La Grande Vasière: architecture, mise en place et estimation des facteurs de son évolution. In: Colloque Défi Golfe de Gascogne. Ifremer, Brest, pp 22–24

    Google Scholar 

  • Bourillet J-F, Jouanneau J-M, Macher C et al (2006) La Grande Vasière” mid-shelf mud belt: Holocene sedimentary structure, natural and anthropogenic impacts. In: X International Symposium on Oceanography of the Bay of Biscay, April 19–21 2006. Vigo, Galicia, pp 131–134

    Google Scholar 

  • Bouysse P, Lesueur P, Klingebiel A (1986) Carte des sédiments superficiels du plateau continental du Golfe de Gascogne: partie septentrionale au 1/500.000. co-éditée par BRGM et IFREMER. http://sextant.ifremer.fr/record/ea0b61b0-71c6-11dc-b1e4-000086f6a62e/. Accessed 18 June 2015

  • Bradshaw C, Tjensvoll I, Sköld M et al (2012) Bottom trawling resuspends sediment and releases bioavailable contaminants in a polluted fjord. Environ Pollut 170:232–241. doi:10.1016/j.envpol.2012.06.019

    Article  Google Scholar 

  • Brown CJ, Cooper KM, Meadows WJ et al (2002) Small-scale mapping of sea-bed assemblages in the eastern English Channel using sidescan sonar and remote sampling techniques. Estuar Coast Shelf Sci 54:263–278. doi:10.1006/ecss.2001.0841

    Article  Google Scholar 

  • Brown EJ, Finney B, Dommisse M, Hills S (2005) Effects of commercial otter trawling on the physical environment of the southeastern Bering Sea. Cont Shelf Res 25:1281–1301. doi:10.1016/j.csr.2004.12.005

    Article  Google Scholar 

  • Castaing P (1981) Le transfert à l’océan des suspensions estuariennes: cas de la Gironde. Ph.D. Thesis. University of Bordeaux, Bordeaux, p 530

    Google Scholar 

  • Castaing P, Jouanneau JM (1987) Les apports sédimentaires actuels d’origine continentale aux océans. Bull IGBA 41:53–60

    Google Scholar 

  • Castaing P, Froidefond JM, Lazure P et al (1999) Relationship between hydrology and seasonal distribution of suspended sediments on the continental shelf of the Bay of Biscay. Deep-Sea Res II Top Stud Oceanogr 46:1979–2001

    Article  Google Scholar 

  • Charria G, Lazure P, Le Cann B et al (2013) Surface layer circulation derived from Lagrangian drifters in the Bay of Biscay. J Mar Syst 109:S60–S76

    Article  Google Scholar 

  • Chittenden ME Jr, Van Engel WA (1972) Effect of a tickler chain and tow duration on trawl catches of the blue crab, Callinectes sapidus. Trans Am Fish Soc 101:732–734

    Article  Google Scholar 

  • Churchill JH (1989) The effect of commercial trawling on sediment resuspension and transport over the Middle Atlantic Bight continental shelf. Cont Shelf Res 9:841–865. doi:10.1016/0278-4343(89)90016-2

    Article  Google Scholar 

  • Cole HA (1971) Heavy tickler chain-right or wrong. World Fishing 20:8

    Google Scholar 

  • Cornou A-S, Quinio-Scavinner M, Delaunay D, et al. (2015) Observations à bord des navires de pêche professionnelle. Bilan de l’échantillonnage 2014. Technical Report Ifremer. http://doi.org/10.13155/39722

  • Darboux F, Huang C (2003) An instantaneous-profile laser scanner to measure soil surface microtopography. Soil Sci Soc Am J 67:92–99

    Article  Google Scholar 

  • De Groot SJ (1984) The impact of bottom trawling on benthic fauna of the North Sea. Ocean Manage 9:177–190. doi:10.1016/0302-184X(84)90002-7

    Article  Google Scholar 

  • Dellapenna TM, Allison MA, Gill GA et al (2006) The impact of shrimp trawling and associated sediment resuspension in mud dominated, shallow estuaries. Estuar Coast Shelf Sci 69:519–530. doi:10.1016/j.ecss.2006.04.024

    Article  Google Scholar 

  • Dounas C, Davies I, Triantafyllou G et al (2007) Large-scale impacts of bottom trawling on shelf primary productivity. Cont Shelf Res 27:2198–2210

    Article  Google Scholar 

  • Draye R (2015) Caractérisation à haute résolution de la structure physique et de l’organisation biologique des fonds marins par traitement d’images à partir d’un micro-tropographe laser. Rapport de Master 2. Université Paul Sabatier Toulouse III, Ifremer EMH Nantes, France

    Google Scholar 

  • Dubrulle C, Jouanneau JM, Lesueur P et al (2007) Nature and rates of fine-sedimentation on a mid-shelf: “La Grande Vasière” (Bay of Biscay, France). Cont Shelf Res 27:2099–2115

    Article  Google Scholar 

  • Durrieu de Madron X, Ferré B, Le Corre G et al (2005) Trawling-induced resuspension and dispersal of muddy sediments and dissolved elements in the Gulf of Lion (NW Mediterranean). Cont Shelf Res 25:2387–2409. doi:10.1016/j.csr.2005.08.002

    Article  Google Scholar 

  • Eigaard OR, Bastardie F, Breen M et al (2015) Estimating seabed pressure from demersal trawls, seines, and dredges based on gear design and dimensions. ICES J Mar Sci 73:i27–i43

    Article  Google Scholar 

  • Ferré B, Durrieu de Madron X, Estournel C et al (2008) Impact of natural (waves and currents) and anthropogenic (trawl) resuspension on the export of particulate matter to the open ocean: Application to the Gulf of Lion (NW Mediterranean). Cont Shelf Res 28:2071–2091. doi:10.1016/j.csr.2008.02.002

    Article  Google Scholar 

  • Folliot B (2004) La Grande Vasière : étude sédimentologique de deux secteurs septentrionaux. DEA on Dynamique et Environnements Sédimentaires Lille-Caen-Rouen, France, p 39

    Google Scholar 

  • Francois RE, Garrison GR (1982a) Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J Acoust Soc Am 72:1879–1890

    Article  Google Scholar 

  • Francois RE, Garrison GR (1982b) Sound absorption based on ocean measurements: part I: pure water and magnesium sulfate contributions. J Acoust Soc Am 72:896–907

    Article  Google Scholar 

  • Gartner JW (2004) Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California. Mar Geol 211:169–187

    Article  Google Scholar 

  • Gerritsen H, Lordan C (2010) Integrating vessel monitoring systems (VMS) data with daily catch data from logbooks to explore the spatial distribution of catch and effort at high resolution. ICES J Mar Sci 68:245–252

    Article  Google Scholar 

  • Gerritsen HD, Minto C, Lordan C (2013) How much of the seabed is impacted by mobile fishing gear? Absolute estimates from Vessel Monitoring System (VMS) point data. ICES J Mar Sci 70:523–531

    Article  Google Scholar 

  • Gilkinson K, King EL, Li MZ et al (2015) Processes of physical change to the seabed and bivalve recruitment over a 10-year period following experimental hydraulic clam dredging on Banquereau, Scotian Shelf. Cont Shelf Res 92:72–86. doi:10.1016/j.csr.2014.11.006

    Article  Google Scholar 

  • Graham M (1955) Effect of trawling on animals of the sea bed. Deep-Sea Res 3:1–6

    Google Scholar 

  • Hall SJ (1999) The effects of fishing on marine ecosystems and communities. Blackwell, Oxford

    Google Scholar 

  • Hintzen NT, Piet GJ, Brunel T (2010) Improved estimation of trawling tracks using cubic Hermite spline interpolation of position registration data. Fish Res 101:108–115

    Article  Google Scholar 

  • Jacobs W, Le Hir P, Van Kesteren W, Cann P (2011) Erosion threshold of sand–mud mixtures. Cont Shelf Res 31:S14–S25

    Article  Google Scholar 

  • Jennings S, Kaiser M, Reynolds JD (2009) Marine fisheries ecology. Wiley, Oxford

    Google Scholar 

  • Jones JB (1992) Environmental impact of trawling on the seabed: a review. N Z JMar FreshwRes 26:59–67

    Article  Google Scholar 

  • Jonsson IG (1966) Wave boundary layers and friction factors. In: Proceedings of 10th International Conference on Coastal Engineering. American Society of Civil Engineers, New York, pp 127–148

    Google Scholar 

  • Jouanneau JM, Weber O, Cremer M, Castaing P (1999) Fine-grained sediment budget on the continental margin of the Bay of Biscay. Deep-Sea Res II Top Stud Oceanogr 46:2205–2220

    Article  Google Scholar 

  • Kaiser MJ, Collie JS, Hall SJ et al (2002) Modification of marine habitats by trawling activities: prognosis and solutions. Fish Fish 3:114–136

    Article  Google Scholar 

  • Krost P, Bernhard M, Werner F, Hukriede W (1989) Otter trawl tracks in Kiel Bay (Western Baltic) mapped by sidescan sonar. Meeresforsch 32:344–353

    Google Scholar 

  • Lambert GI, Jennings S, Hiddink JG et al (2012) Implications of using alternative methods of vessel monitoring system (VMS) data analysis to describe fishing activities and impacts. ICES J Mar Sci 69:682–693

    Article  Google Scholar 

  • Lazure P, Dumas F (2008) An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS). Adv Water Resour 31:233–250

    Article  Google Scholar 

  • Lazure P, Jégou A-M (1998) 3D modelling of seasonal evolution of Loire and Gironde plumes on Biscay Bay continental shelf. Oceanol Acta 21:165–177

    Article  Google Scholar 

  • Le Boyer A, Charria G, Le Cann B et al (2013) Circulation on the shelf and the upper slope of the Bay of Biscay. Cont Shelf Res 55:97–107

    Article  Google Scholar 

  • Le Loc’h F (2004) Structure, fonctionnement, évolution des communautés benthiques des fonds meubles exploités du plateau continental Nord Gascogne. Ph.D. Thesis. University of Western Brittany, France, p 326

    Google Scholar 

  • Lee J, South AB, Jennings S (2010) Developing reliable, repeatable, and accessible methods to provide highresolution estimates of fishing-effort distributions from vessel monitoring system (VMS) data. ICES J Mar Sci 67:1260–1271

    Article  Google Scholar 

  • Leynaud D (2007) Evolution sédimentologique de la Grande Vasière (GV). Rapport d’activité. LEMAR-IUEM, France

    Google Scholar 

  • Linnane A, Ball B, Munday B et al (2000) A review of potential techniques to reduce the environmental impact of demersal trawls. Irish Fisheries Investigations 7:1–39

    Google Scholar 

  • Løkkeborg S (2005) Impacts of trawling and scallop dredging on benthic habitats and communities. FAO, Rome

    Google Scholar 

  • Lurton X (2002) An introduction to underwater acoustics: principles and applications. Springer, Berlin

    Google Scholar 

  • Main J, Sangster GI (1979) A study of bottom trawling gear on both sand and hardground. Scott Fish Res Rep 14:1–15

    Google Scholar 

  • Main J, Sangster GI (1981) A study of the sand clouds produced by trawl boards and their possible effect on fish capture. Scott Fish Res Rep 20:1–20

    Google Scholar 

  • Main J, Sangster GI (1983) Fish reactions to trawl gear: a study comparing light and heavy ground gear. Scott Fish Res Rep 27:1–17

    Google Scholar 

  • Manning AJ, Dyer KR (1999) A laboratory examination of floc characteristics with regard to turbulent shearing. Mar Geol 160:147–170

    Article  Google Scholar 

  • Martín J, Puig P, Palanques A, Giamportone A (2014) Commercial bottom trawling as a driver of sediment dynamics and deep seascape evolution in the Anthropocene. Anthropocene 7:1–15

    Article  Google Scholar 

  • Mayer LM, Schick DF, Findlay RH, Rice DL (1991) Effects of commercial dragging on sedimentary organic matter. Mar Environ Res 31(4):249–261. doi:10.1016/0141-1136(91)90015-Z

    Article  Google Scholar 

  • McCave IN (1972) Transport and escape of fine-grained sediment from shelf areas. In: Swift DJP, Duane B, Pilkey OH (eds) Shelf sediment transport: process and pattern. Hutchinson and Ross, Stroudsburg, pp 225–248

    Google Scholar 

  • Mesnil B (2008) Public-aided crises in the French fishing sector. Ocean Coast Manag 51:689–700

    Article  Google Scholar 

  • Mulder HP, Udink C (1991) Modelling of cohesive sediment transport. A case study: the western Scheldt estuary. In: Edge BL (ed) Proceedings of the 22nd International Conference on Coastal Engineering. American Society of Civil Engineers, New York, pp 3012–3023

    Google Scholar 

  • O’Neill FG, Summerbell K (2011) The mobilisation of sediment by demersal otter trawls. Mar Pollut Bull 62:1088–1097

    Article  Google Scholar 

  • O’Neill FG, Summerbell K, Breen M (2009) An underwater laser stripe seabed profiler to measure the physical impact of towed gear components on the seabed. Fish Res 99:234–238

    Article  Google Scholar 

  • Oberle FK, Storlazzi CD, Hanebuth TJ (2015a) What a drag: quantifying the global impact of chronic bottom trawling on continental shelf sediment. Journal of Marine Systems. doi: http://dx.doi.org/10.1016/j.jmarsys.2015.12.007

  • Oberle FK, Swarzenski PW, Reddy CM, et al. (2015b) Deciphering the lithological consequences of bottom trawling to sedimentary habitats on the shelf. Journal of Marine Systems. doi: http://dx.doi.org/10.1016/j.jmarsys.2015.12.008

  • Olsen C fR, Cutshall NH, Larsen IL (1982) Pollutant—particle associations and dynamics in coastal marine environments: a review. Marine Chemistry 11:501–533

    Article  Google Scholar 

  • Palanques A, Guillén J, Puig P (2001) Impact of bottom trawling on water turbidity and muddy sediment of an unfished continental shelf. Limnol Oceanogr 46:1100–1110

    Article  Google Scholar 

  • Palanques A, Puig P, Guillén J et al (2014) Effects of bottom trawling on the Ebro continental shelf sedimentary system (NW Mediterranean). Cont Shelf Res 72:83–98. doi:10.1016/j.csr.2013.10.008

    Article  Google Scholar 

  • Pilskaln CH, Churchill JH, Mayer LM (1998) Resuspension of sediment by bottom trawling in the Gulf of Maine and potential geochemical consequences. Conserv Biol 12:1223–1229

    Article  Google Scholar 

  • Pinot J-P (1974) Le precontinent Breton: entre Penmarc’h, Belle-Ile et l’escarpement continental, etude geomorphologique. Impram Lannion, France

    Google Scholar 

  • Pinot JP (1976) Géomorphologie de la plateforme continentale sud-armoricaine. J Rech Oceanogr 1:49–56

    Google Scholar 

  • Planque B, Beillois P, Jégou A-M et al (2003) Large-scale hydroclimatic variability in the Bay of Biscay: the 1990s in the context of interdecadal changes. ICES Mar Sci Symp 219:61–70

    Google Scholar 

  • Puig P, Canals M, Company JB et al (2012) Ploughing the deep sea floor. Nature 489:286–289

    Article  Google Scholar 

  • Pusceddu A, Bianchelli S, Martín J et al (2014) Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc Natl Acad Sci 111:8861–8866

    Article  Google Scholar 

  • Rijnsdorp AD, Buys AM, Storbeck F, Visser EG (1998) Micro-scale distribution of beam trawl effort in the southern North Sea between 1993 and 1996 in relation to the trawling frequency of the sea bed and the impact on benthic organisms. ICES J Mar Sci 55:403–419

    Article  Google Scholar 

  • Schoellhamer DH (1996) Anthropogenic sediment resuspension mechanisms in a shallow microtidal estuary. Estuar Coast Shelf Sci 43:533–548. doi:10.1006/ecss.1996.0086

    Article  Google Scholar 

  • Schubel JR, Carter HH, Wise WM (1979) Shrimping as a source of suspended sediment in Corpus Christi Bay (Texas). Estuar Coast Shelf Sci 2:201–203

    Article  Google Scholar 

  • Schwinghamer P, Guigne JY, Siu WC (1996) Quantifying the impact of trawling on benthic habitat structure using high resolution acoustics and chaos theory. Can J Fish Aquat Sci 53:288–296

    Article  Google Scholar 

  • Simpson AW, Watling L (2006) An investigation of the cumulative impacts of shrimp trawling on mud-bottom fishing grounds in the Gulf of Maine: effects on habitat and macrofaunal community structure. ICES J Mar Sci 63:1616–1630

    Article  Google Scholar 

  • Skaar KL, Jorgensen T, Ulvestad BKH, Engas A (2011) Accuracy of VMS data from Norwegian demersal stern trawlers for estimating trawled areas in the Barents Sea. ICES J Mar Sci 68:1615–1620

    Article  Google Scholar 

  • Soulsby R (1997) Dynamics of marine sands: a manual for practical applications. Thomas Telford, London

    Google Scholar 

  • Soulsby RL, Hamm L, Klopman G et al (1993) Wave-current interaction within and outside the bottom boundary layer. Coast Eng 21:41–69

    Article  Google Scholar 

  • Syvitski JP, Vörösmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  Google Scholar 

  • Tessier C (2006) Caractérisation et dynamique des turbidités en zone côtière: l’exemple de la région marine Bretagne Sud. Ph.D. Thesis. University of Bordeaux 1, France, p 300

    Google Scholar 

  • Tessier C, Le Hir P, Dumas F, Jourdin F (2008a) Modélisation des turbidités en Bretagne sud et validation par des mesures in situ. Eur J Environ Civ Eng 12:179–190

    Article  Google Scholar 

  • Tessier C, Le Hir P, Lurton X, Castaing P (2008b) Estimation de la matière en suspension à partir de l’intensité rétrodiffusée des courantomètres acoustiques à effet Doppler (ADCP). Compt Rendus Geosci 340:57–67

    Article  Google Scholar 

  • Urick RJ (1975) Principles of underwater sound, 2nd edn. McGraw Hill, New York

    Google Scholar 

  • Van Beek FA, Van Leeuwen PI, Rijnsdorp AD (1990) On the survival of plaice and sole discards in the otter-trawl and beam-trawl fisheries in the North Sea. Neth J Sea Res 26:151–160

    Article  Google Scholar 

  • Vanney J-R (1977) Géomorphologie de la marge continentale sud-armoricaine. Société d’édition d’enseignement supérieur, Paris

    Google Scholar 

  • Vincent B, Vacherot J-P, Dagorn M, et al. (2015) Optimisation des panneaux Jumper-Rapport final.

  • Watling L, Norse EA (1998) Disturbance of the seabed by mobile fishing gear: a comparison to forest clearcutting. Conserv Biol 12:1180–1197

    Article  Google Scholar 

  • Wheatcroft RA, Drake DE (2003) Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. the role of episodic sedimentation. Mar Geol 199:123–137

    Article  Google Scholar 

  • Widdows J, Brinsley MD, Bowley N, Barrett C (1998) A benthic annular flume forin situmeasurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments. Estuar Coast Shelf Sci 46:27–38

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the SHOM (Service Hydrographique et Océanographique de la Marine) and IFREMER (Institut Français de Recherche pour l’Exploitation de la Mer). Sea trials were funded by the BENTHIS European project (grant agreement no. 312088). The authors would like to thank Matthias JACQUET and David LE BERRE from IFREMER for technical support as well as the crews of the N/O Thalia and the F/V Côte d’Ambre for their assistance during all the campaigns. They also thank François Le Loc’h who supplied surficial mud content data over the 2000–2002 period. Jumper doors have been invented by Benoit Vincent in 2008 with the co-funding of the Région Bretagne, France Fillière Pêche and IFREMER (between 2013 and 2015), as well as the Morgère company that provided support for the development. Lastly, the two anonymous reviewers are deeply thanked for their comments and suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baptiste Mengual.

Additional information

Responsible Editor: Michael Fettweis

This article is part of the Topical Collection on the 13th International Conference on Cohesive Sediment Transport in Leuven, Belgium 7–11 September 2015

Appendices

Appendix 1 backscatter index provided by ADCP

Tessier et al. (2008b) proposed a processing method for the RDI ADCP 1200 kHz used in this study. All the following coefficients and hypotheses are thus directly extracted from Tessier et al. (2008b). As deduced from the sonar equation (Urick 1975; Lurton 2002), they expressed the backscatter index BI according to the relation:

$$ \mathrm{BI}=\mathrm{R}\mathrm{L}-\mathrm{S}\mathrm{L}+{\mathrm{TL}}_{\mathrm{geo}}+{\mathrm{TL}}_{\mathrm{ws}}-{\mathrm{C}}_{\mathrm{geo}} $$
(7)

where RL is the received level (dB.μPa−1) and is expressed as:

$$ \mathrm{R}\mathrm{L}=B+\mathrm{K}\mathrm{C}\left(\mathrm{E}\mathrm{C}-{\mathrm{EC}}_0\right) $$
(8)

where B and EC0 are internal transducer noises respectively set at 70 dB and 46 counts; KC is a dB/count conversion coefficient, fixed at 0.423 and EC is the echo received signal in count. SL corresponds to the emitted level and is set to 217 dB μPa−1. TLgeo and TLws are terms linked to the transmission loss along the beam path (in dB). TLgeo is the geometrical attenuation for the spherical spreading and is expressed as:

$$ {\mathrm{TL}}_{\mathrm{geo}}=40\times { \log}_{10}\left(\psi R\right) $$
(9)

where R is the distance from the transducer and ψ is the near field correction. TLws corresponds to the signal attenuation induced by the water and the particles and is expressed as:

$$ {\mathrm{TL}}_{\mathrm{ws}}=2\left({\alpha}_w+{\alpha}_S\right)R $$
(10)

where α w is the water attenuation coefficient set to 0.5316 dB m−1 according to the model of Francois and Garrison (1982a, b). When the suspended particulate matter concentrations are generally inferior to 200 mg l−1, the signal attenuation induced by the particles can be neglected (α S  = 0).

At last, C geo corresponds to a geometric correction that accounts for the expansion of the backscattering volume with the increasing distance R from the source. It is defined as:

$$ {C}_{\mathrm{geo}}=10\times { \log}_{10}\left(\pi {\left(\frac{\phi }{2}\right)}^2{R}^2\times L\right) $$
(11)

where ϕ is the equivalent opening of the beam and L refers to the half-height cell.

Appendix 2 computation of the bed shear stress under natural forcing

Computation of the wave shear stress

Wave-induced bottom shear stresses have been computed with a wave hindcast database built with the WW3 wave model (Boudière et al. 2013) that provides parameters such as bottom amplitude displacement (A), bottom orbital velocities (U b ) and the direction of wave propagation. The WW3 code is a phase-averaged wave model that resolves the random phase spectral action density balance equation for a spectrum of wave numbers and directions: in the present application, 24 directions and 32 frequencies were accounted for. The realistic and validated configuration proposed by Boudière et al. (2013) includes all the continental shelf of the Bay of Biscay, using an unstructured grid. The horizontal resolution of the computational grid varies in our case from 200 m (nearshore) to 10 km (open sea). According to Jonsson (1966) formulation, the wave-induced shear stress τ w is computed as:

$$ {\tau}_w=\frac{1}{2}{f}_w\rho {U_b}^2 $$
(12)

where ρ is the water density and f w refers to the wave-induced friction factor. This factor is computed according to the Soulsby et al. (1993) formulation:

$$ {f}_w=1.39\ {\left(\frac{A}{z_0}\right)}^{-0.52} $$
(13)

where the bed roughness length z 0 is equal to 5 × 10−4 m.

Computation of the current shear stress

The current-induced bottom shear stress estimation is based on the tridimensional hydrodynamic model MARS3D (Lazure and Dumas 2008) which runs on a realistic configuration validated at the regional scale of the Bay of Biscay. This model resolves the Navier-Stokes equations with the classical Boussinesq and hydrostatic hypotheses on Cartesian grid. Regarding the mesh, the horizontal resolution is equal to 2.5 km and the vertical discretisation is characterised by 40 generalised sigma levels. The bed shear stress induced by currents is obtained through the relationship:

$$ {\tau}_c=\rho {u_{*}}^2 $$
(14)

where the friction velocity u * is computed as:

$$ {u}_{*}=0.4{u}_1/ \ln \left(\frac{z_1}{z_0}\right) $$
(15)

where ρ is the water density, u 1 is the computed velocity at the elevation z 1 which corresponds to half the near-bottom cell thickness, and z 0 is the bottom sediment roughness length set to a constant value of 5 × 10−4 m.

Computation of the total bottom shear stress

The non-linear interaction between waves and currents is accounted for by computing the total bottom shear stress according to the formulation from Soulsby (1997):

$$ \tau ={\left[{\left({\tau}_m+{\tau}_w| \cos \kern0.1em \phi |\right)}^2+{\left({\tau}_w \sin \kern0.1em \phi \right)}^2\right]}^{1/2} $$
(16)

where ϕ is the angle between the current and the wave propagation directions and τ m represents the wave-averaged bed shear stress. τ m is computed from the current- and wave-induced bed shear stresses τ c and τ w which correspond to the bed shear stresses due to the current alone and to the wave alone, respectively:

$$ {\tau}_m={\tau}_c\left[1+1.2{\left(\frac{\tau_w}{\tau_c+{\tau}_w}\right)}^{3.2}\right] $$
(17)

The expression of τ is deduced from a vector addition of τ m and τ w .

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengual, B., Cayocca, ., Le Hir, P. et al. Influence of bottom trawling on sediment resuspension in the ‘Grande-Vasière’ area (Bay of Biscay, France). Ocean Dynamics 66, 1181–1207 (2016). https://doi.org/10.1007/s10236-016-0974-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-0974-7

Keywords

Navigation