Ocean Dynamics

, Volume 66, Issue 8, pp 1025–1035 | Cite as

Spatial characteristics of ocean surface waves

  • Johannes Gemmrich
  • Jim Thomson
  • W. Erick Rogers
  • Andrey Pleskachevsky
  • Susanne Lehner
Article
Part of the following topical collections:
  1. Topical Collection on the 14th International Workshop on Wave Hindcasting and Forecasting in Key West, Florida, USA, November 8-13, 2015

Abstract

The spatial variability of open ocean wave fields on scales of O (10km) is assessed from four different data sources: TerraSAR-X SAR imagery, four drifting SWIFT buoys, a moored waverider buoy, and WAVEWATCH III model runs. Two examples from the open north-east Pacific, comprising of a pure wind sea and a mixed sea with swell, are given. Wave parameters attained from observations have a natural variability, which decreases with increasing record length or acquisition area. The retrieval of dominant wave scales from point observations and model output are inherently different to dominant scales retrieved from spatial observations. This can lead to significant differences in the dominant steepness associated with a given wave field. These uncertainties have to be taken into account when models are assessed against observations or when new wave retrieval algorithms from spatial or temporal data are tested. However, there is evidence of abrupt changes in wave field characteristics that are larger than the expected methodological uncertainties.

Keywords

Spatial wave observations Wave retrieval from SAR Wavewatch III model Model-data comparison 

References

  1. Ardhuin F et al. (2010) Semi-empirical dissipation source functions for ocean waves: Part I, definitions, calibration and validations. J Phys Oceanogr 40:1917–194CrossRefGoogle Scholar
  2. Banner ML, Babanin AV, Young IR (2000) Breaking probability for dominant waves on the sea surface. J Phys Oceanogr 30(12):3145–3160CrossRefGoogle Scholar
  3. Banner ML, Gemmrich JR, Farmer DM (2002) Multiscale measurements of ocean wave breaking probability. J Phys Oceanogr 32(12):3364–3375CrossRefGoogle Scholar
  4. Bitner-Gregersen EM, Magnusson AK (2014) Effect of intrinsic and sampling variability on wave parameters and wave statistics. Ocean Dyn 64:1643–1655CrossRefGoogle Scholar
  5. BruckM(2015) Sea state measurements using TerraSAR-X / Tandem-X. Ph.D. thesis, University KielGoogle Scholar
  6. Bruck M, Lehner S (2013) Coastal wave field extraction using TerraSAR-X data. J Appl Remote Sens 7. doi:10.1117/1.JRS.7.073,694
  7. Gebhardt C, Pleskachevsky A, Rosenthal W, Lehner S, Hoffmann P, Kieser J, Bruins T (2015) Comparing wavelength simulated by coastal wave model CWAM and TerraSAR-X satellite data. Ocean ModelGoogle Scholar
  8. Gemmrich J, Garrett C (2011) Dynamical and statistical explanations of observed occurrence rates of rogue waves. Nat Hazards Earth Syst Sci 11:1437–1446CrossRefGoogle Scholar
  9. Gemmrich J, Garrett C (2012) The signature of inertial and tidal currents in offshore wave records. J Phys Oceanogr 42. doi:10.1175/JPO--D--12--043.1
  10. Heller EJ (2006) Freak ocean waves and refraction of Gaussian seas, pp. 189–210. SpringerGoogle Scholar
  11. Herbers THC, Jessen P, Janssen T, Colbert D, MacMahan JH (2012) Observing ocean surface waves with gps tracked buoys. J Atmos Ocean Tech 29. doi:10.1175/JTECH--D--11--00,128.1
  12. Hogan T, Coauthors (2014) The navy global environmental model. Oceanograph 27:116–125CrossRefGoogle Scholar
  13. Koch W (2004) Directional analysis of SAR images aiming at wind direction. IEEE Trans Geosci Remote SensGoogle Scholar
  14. Lehner S, Pleskachevsky A, Velotto D, Jacobsen S (2014) Meteo-marine parameters and their variability observed by high-resolution satellite radar images. Oceanography 26:81–91Google Scholar
  15. Longuet-Higgins MS, Cartwright DE, Smith ND (1963) Observations of the directional spectrum of sea waves using the motions of a floating buoy., Conference on Ocean Wave Spectra, Ed., Prentice HallGoogle Scholar
  16. Pleskachevsky A, Rosenthal W, Lehner S (2016) Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images. ISPRS Journal of Photogrammetry and Remote Sensing, doi:10.1016/j.isprsjprs.2016.02.001 Google Scholar
  17. Ren ASL, Brusch YS, Li X, He M (2012) An algorithm for the retrieval of sea surface wind fields using X-band TerraSAR-X data. Int J Remote Sens 33:7310–7336CrossRefGoogle Scholar
  18. Schwendeman M, Thomson J (2015) Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. doi:10.1002/2015JC011196
  19. Schwendeman M, Thomson J, Gemmrich J (2014) Wave breaking dissipation in a fetch limited seas. J Phys Oceanogr 44:104–127CrossRefGoogle Scholar
  20. Thomson J (2012) Wave breaking dissipation observed with swift drifters. J Atmos Ocean Tech 29:1866–1882CrossRefGoogle Scholar
  21. Thomson J, Schwendeman MS, Zippel SF, Moghimi S, Gemmrich J, Rogers E (2016) Wave breaking turbulence in the ocean surface layerGoogle Scholar
  22. Toba Y (1972) Local balance in the air-sea boundary processes: I. on the growth process of wind waves. J Oceanogr Soc Jpn 28:15–26CrossRefGoogle Scholar
  23. Tolman H, the WAVEWATCH III Development Group (2014) User manual and system documentation of WAVEWATCH III, version 4.18, National Oceanic and Atmospheric Administration National Weather Service National Centers for Environmental Prediction, 5830 University Research Court College Park, MD, 20740Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Johannes Gemmrich
    • 1
  • Jim Thomson
    • 2
  • W. Erick Rogers
    • 3
  • Andrey Pleskachevsky
    • 4
  • Susanne Lehner
    • 4
  1. 1.University of Victoria, Physics and AstronomyVictoriaCanada
  2. 2.Applied Physics LaboratorySeattleUSA
  3. 3.Naval Research Laboratory Stennis Space CenterUSA
  4. 4.German Aerospace Centre - DLRBremenGermany

Personalised recommendations