Skip to main content

Suspended sediment dynamics in a tidal channel network under peak river flow

Abstract

Peak river flows transport fine sediment, nutrients, and contaminants that may deposit in the estuary. This study explores the importance of peak river flows on sediment dynamics with special emphasis on channel network configurations. The Sacramento-San Joaquin Delta, which is connected to San Francisco Bay (California, USA), motivates this study and is used as a validation case. Besides data analysis of observations, we applied a calibrated process-based model (D-Flow FM) to explore and analyze high-resolution (∼100 m, ∼1 h) dynamics. Peak river flows supply the vast majority of sediment into the system. Data analysis of six peak flows (between 2012 and 2014) shows that on average, 40 % of the input sediment in the system is trapped and that trapping efficiency depends on timing and magnitude of river flows. The model has 90 % accuracy reproducing these trapping efficiencies. Modeled deposition patterns develop as the result of peak river flows after which, during low river flow conditions, tidal currents are not able to significantly redistribute deposited sediment. Deposition is quite local and mainly takes place at a deep junction. Tidal movement is important for sediment resuspension, but river induced, tide residual currents are responsible for redistributing the sediment towards the river banks and to the bay. We applied the same forcing for four different channel configurations ranging from a full delta network to a schematization of the main river. A higher degree of network schematization leads to higher peak-sediment export downstream to the bay. However, the area of sedimentation is similar for all the configurations because it is mostly driven by geometry and bathymetry.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Achete FM, van der Wegen M, Roelvink D, Jaffe B (2015) A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling. Hydrol Earth Syst Sci Discuss 12:1507–1553. doi:10.5194/hessd-12-1507-2015

    Article  Google Scholar 

  2. Ariathurai R, Arulanandan K (1978) Erosion rates of cohesive soils. J Hydraulics Div 104:5

    Google Scholar 

  3. Aubrey DG (2013) Hydrodynamic controls on sediment transport in well-mixed bays and estuaries. In: Physics of shallow estuaries and bays. Springer-Verlag, pp 245–258. doi:10.1029/LN016p0245

  4. Bergamaschi B, Kuivila K, Fram M (2001) Pesticides associated with suspended sediemnts entering San Francisco Bay following the first major storm of water year 1996. Estuaries 24:368–380. doi:10.2307/1353239

    Article  Google Scholar 

  5. Bertrand-Krajewski J-L, Chebbo G, Saget A (1998) Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon. Water Res 32:2341–2356. doi:10.1016/S0043-1354(97)00420-X

    Article  Google Scholar 

  6. Boumans RMJ, Burdick DM, Dionne M (2002) Modeling habitat change in salt marshes after tidal restoration restoration. Ecology 10:543–555. doi:10.1046/j.1526-100X.2002.02032.x

    Google Scholar 

  7. Callaway JC, Parker VT, Vasey MC, Schile LM, Herbert ER (2011) Tidal Wetland Restoration in San Francisco Bay: History and Current Issues. San Franc Estuary Watershed Sci 9

  8. Capo S, Brenon I, Sottolichio A, Castaing P, Le Goulven P (2009) Tidal sediment transport versus freshwater flood events in the Konkouré Estuary, Republic of Guinea. J Afr Earth Sci 55:52–57. doi:10.1016/j.jafrearsci.2009.01.008

    Article  Google Scholar 

  9. Conomos TJ, Smith RE, Gartner JW (1985) Environmental setting of San Francisco Bay. Hydrobiologia 129:12. doi:10.1007/BF00048684

    Article  Google Scholar 

  10. Deletic A (1998) The first flush load of urban surface runoff. Water Res 32:2462–2470. doi:10.1016/S0043-1354(97)00470-3

    Article  Google Scholar 

  11. Delta Atlas (1995) Sacramento-San Joaquin Delta Atlas vol 7. DWR - Department of Water Resources

  12. Deltares (2014) D-Flow Flexible Mesh, Technical Reference Manual. Deltares, Delft

  13. Downing-Kunz M, Schoellhamer D (2015) Suspended-Sediment Trapping in the Tidal Reach of an Estuarine Tributary Channel. Estuar Coasts 1–15. doi:10.1007/s12237-015-9944-4

  14. Dronkers J (1986) Tidal asymmetry and estuarine morphology. Neth J Sea Res 20:117–131. doi:10.1016/0077-7579(86)90036-0

    Article  Google Scholar 

  15. Fagherazzi S et al (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys 50:RG1002. doi:10.1029/2011rg000359

    Article  Google Scholar 

  16. Friedrichs C, Aubrey D (1988) Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis. Estuar Coast Shelf Sci 27:521–545. doi:10.1016/0272-7714(88)90082-0

    Article  Google Scholar 

  17. Gallo M, Vinzon S (2005) Generation of overtides and compound tides in Amazon estuary. Ocean Dyn 55:441–448. doi:10.1007/s10236-005-0003-8

  18. Ganju NK, Schoellhamer DH (2006) Annual sediment flux estimates in a tidal strait using surrogate measurements estuarine. Coast Shelf Sci 69:165–178. doi:10.1016/j.ecss.2006.04.008

    Article  Google Scholar 

  19. Ganju NK, Schoellhamer DH (2009) Decadal-Timescale Estuarine Geomorphic Change Under Future Scenarios of Climate and Sediment Supply. Estuar Coasts 33:15–29. doi:10.1007/s12237-009-9244-y

  20. Goodwin P, Denton RA (1991) Technical note. seasonal influences on the sediment transport characteristics of the sacramento river, California. In: Ice, March 1991 1991. Ice proceedings. Ice, pp 163–172

  21. Guo L, van der Wegen M, Roelvink JA, He Q (2014) The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics. J Geophys Res Earth Surface 119:2014JF003110. doi:10.1002/2014jf003110

  22. Hoitink AJF, Hoekstra P, van Maren DS (2003) Flow asymmetry associated with astronomical tides: Implications for the residual transport of sediment. J Geophys Res Oceans 108:3315. doi:10.1029/2002jc001539

  23. Hu J, Li S, Geng B (2011) Modeling the mass flux budgets of water and suspended sediments for the river network and estuary in the Pearl River Delta, China. J Mar Syst 88:252–266. doi:10.1016/j.jmarsys.2011.05.002

    Article  Google Scholar 

  24. Kernkamp HWJ, Van Dam A, Stelling GS, De Goede ED Efficient scheme for the shallow water equations on unstructured grids with application to the Continental Shelf. Ocean Dyn 2010. vol Special Issue JONSMOD p29

  25. Kimmerer WJ (2002) Physical, biological, and management responses to variable freshwater flow into the San Francisco estuary. Estuaries 25:1275–1290. doi:10.1007/bf02692224

    Article  Google Scholar 

  26. Kimmerer W (2004) Open water processes of the San Francisco estuary: from physical forcing to biological responses. San Franc Estuary Watershed Sci 2(1). jmie_sfews_10958. Retrieved from: http://escholarship.org/uc/item/9bp499m

  27. Krone RB (1962) Flume studies of the transport of sediment in estuarial shoaling processes. University of California, Berkeley, California

    Google Scholar 

  28. McKee LJ, Ganju NK, Schoellhamer DH (2006) Estimates of suspended sediment entering San Francisco Bay from the Sacramento and San Joaquin Delta, San Francisco Bay, California. J Hydrol 323:335–352. doi:10.1016/j.jhydrol.2005.09.006

    Article  Google Scholar 

  29. Meshkova LV, Carling PA (2012) The geomorphological characteristics of the Mekong River in northern Cambodia: a mixed bedrock–alluvial multi-channel network. Geomorphology 147–148:2–17. doi:10.1016/j.geomorph.2011.06.041

    Article  Google Scholar 

  30. Moskalski SM, Torres R, Bizimis M, Goni M, Bergamaschi B, Fleck J (2013) Low-tide rainfall effects on metal content of suspended sediment in the Sacramento-San Joaquin Delta. Cont Shelf Res 56:39–55. doi:10.1016/j.csr.2013.02.001

    Article  Google Scholar 

  31. Nanson GC, Knighton AD (1996) Anabranching rivers: their cause character and classification. Earth Surf Process Landf 21:217–239. doi:10.1002/(sici)1096-9837(199603)21:3<217::aid-esp611>3.0.co;2-u

    Article  Google Scholar 

  32. Obermann M, Rosenwinkel K-H, Tournoud M-G (2009) Investigation of first flushes in a medium-sized mediterranean catchment. J Hydrol 373:405–415

    Article  Google Scholar 

  33. Phillips JD (2014) Anastamosing channels in the lower Neches River valley, Texas. Earth Surf Process Landf 39:1888–1899. doi:10.1002/esp.3582

    Article  Google Scholar 

  34. Prescott KL, Tsanis IK (1997) Mass balance modelling and wetland restoration. Ecol Eng 9:1–18. doi:10.1016/S0925-8574(97)00015-3

    Article  Google Scholar 

  35. Rijn LC (2011) Analytical and numerical analysis of tides and salinities in estuaries; part I: tidal wave propagation in convergent estuaries. Ocean Dyn 61:1719–1741. doi:10.1007/s10236-011-0453-0

    Article  Google Scholar 

  36. Scully ME, Friedrichs CT (2007) Sediment pumping by tidal asymmetry in a partially mixed estuary. J Geophys Res 112. doi:10.1029/2006jc003784

  37. Townend I (2012) The estimation of estuary dimensions using a simplified form model and the exogenous controls. Earth Surf Process Landf 37:1573–1583. doi:10.1002/esp.3256

  38. Townshead A (2013) Vortex performs maintenance in Sacramento and Stockton ship channels vol 29. The Waterways Journal Inc., Missouri, USA

    Google Scholar 

  39. van der Wegen M, Roelvink JA (2012) Reproduction of estuarine bathymetry by means of a process-based model: Western Scheldt case study. The Netherlands Geomorph 179:152–167. doi:10.1016/j.geomorph.2012.08.007

  40. van der Wegen M, Wang ZB, Savenije HHG, Roelvink JA (2008) Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment. J Geophysical Res 113. doi:10.1029/2007jf000898

  41. Winterwerp, J.C., Manning, A.J., Martens, C., de Mulder, T., Vanlede, J., 2006. A heuristic formula for turbulence-induced flocculation of cohesive sediment. Estuarine, Coastal and Shelf Science 68:195–207

  42. Wright SA, Schoellhamer DH (2005a) Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta. Water Resour Res 41:W09428. doi:10.1029/2004wr003753

    Article  Google Scholar 

  43. Wright SA, Schoellhamer DH (2005b) Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta. Water Resour Res 41. doi:10.1029/2004wr003753

Download references

Acknowledgments

The research is part of the US Geological Survey CASCaDE climate change project (CASCaDE contribution 65). The authors acknowledge the US Geological Survey Priority Ecosystem Studies and CALFED for making this research financially possible. The data used in this work are freely available on the USGS website (http://nwis.waterdata.usgs.gov). This work is partially financed by CAPES. The model applied in this work will be freely available from http://www.d3d-baydelta.org/.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernanda Minikowski Achete.

Additional information

This article is part of the Topical Collection on Physics of Estuaries and Coastal Seas 2014 in Porto de Galinhas, PE, Brazil, 19-23 October 2014

Responsible Editor: Carlos Augusto França Schettini

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Achete, F.M., van der Wegen, M., Roelvink, D. et al. Suspended sediment dynamics in a tidal channel network under peak river flow. Ocean Dynamics 66, 703–718 (2016). https://doi.org/10.1007/s10236-016-0944-0

Download citation

Keywords

  • Numerical model
  • Cohesive sediment
  • Estuary
  • Sacramento-San Joaquin Delta
  • Sedimentation