Ocean Dynamics

, Volume 66, Issue 4, pp 589–603 | Cite as

Unstructured-mesh modeling of the Congo river-to-sea continuum

  • Yoann Le Bars
  • Valentin Vallaeys
  • Éric Deleersnijder
  • Emmanuel HanertEmail author
  • Loren Carrere
  • Claire Channelière
Part of the following topical collections:
  1. Topical Collection on the 47th International Liège Colloquium on Ocean Dynamics, Liège, Belgium, 4-8 May 2015


With the second largest outflow in the world and one of the widest hydrological basins, the Congo River is of a major importance both locally and globally. However, relatively few studies have been conducted on its hydrology, as compared to other great rivers such as the Amazon, Nile, Yangtze, or Mississippi. The goal of this study is therefore to help fill this gap and provide the first high-resolution simulation of the Congo river-estuary-coastal sea continuum. To this end, we are using a discontinuous-Galerkin finite element marine model that solves the two-dimensional depth-averaged shallow water equations on an unstructured mesh. To ensure a smooth transition from river to coastal sea, we have considered a model that encompasses both hydrological and coastal ocean processes. An important difficulty in setting up this model was to find data to parameterize and validate it, as it is a rather remote and understudied area. Therefore, an important effort in this study has been to establish a methodology to take advantage of all the data sources available including nautical charts that had to be digitalized. The model surface elevation has then been validated with respect to an altimetric database. Model results suggest the existence of gyres in the vicinity of the river mouth that have never been documented before. The effect of those gyres on the Congo River dynamics has been further investigated by simulating the transport of Lagrangian particles and computing the water age.


Multi-scale modelling Congo river-to-sea continuum Tides Water age Satellite altimetry 



The financial support of Total ep Recherche Développement and cls (under contract cls-dos-13-003) is gratefully acknowledged. Slim is developed under the auspices of the Action de Recherche Concertée “Taking up the challenges of multi-scale marine modelling” funded by the Communauté frana̧ise de Belgique under contract arc 10/15-028. Some of the computational resources were provided by the Consortium des Équipements de Calcul Intensif (céci), funded by the f.r.s.-fnrs under Grant No. 2.5020.11. Yoann Le Bars is indebted to Christopher Thomas for his comments and constructive criticism during the preparation of the present manuscript. Éric Deleersnijder is an honorary Research associate with the f.r.s.-fnrs.


  1. Burke K (1972) Longshore drift, submarine canyons and submarine fans in development of Niger delta. Bull Am Assoc Pet Geol 56(10):1975–1983Google Scholar
  2. Carrère L, Lyard F, Cancet M, Guillot A, Roblou L (2012) FES2012: A New Global Tidal model taking advantage of nearly 20 years of altimetry In: Proceedings of Meeting “20 years of altimetry”. Esa publication, VeniceGoogle Scholar
  3. Chassignet EP, Hurlburt HE, Smedstad OM, Halliwell GR, Hogan PJ, Wallcraft AJ, Baraille R, Bleck R (2007) The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system. J Mar Syst 65 (1–4):60–83. doi: 10.1016/j.jmarsys.2005.09.016 CrossRefGoogle Scholar
  4. de Brye B, de Brauwere A, Gourgue O, Karna T, Lambrechts J, Comblen R, Deleersnijder E (2010) A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coast Eng 57 (9):850–863. doi: 10.1016/j.coastaleng.2010.04.001 CrossRefGoogle Scholar
  5. de Brye B, Schellen S, Sassi M, Vermeulen B, Karna T, Deleersnijder E (2011) Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia). Ocean Dyn 61:1107–1120. doi: 10.1007/s10236-011-0410-y CrossRefGoogle Scholar
  6. de Brye B, de Brauwere A, Gourgue O, Delhez E, Deleersnijder E (2012) Water renewal timescales in the Scheldt Estuary. J Mar Syst 94:74–86CrossRefGoogle Scholar
  7. Deleersnijder E, Campin J, Delhez EJM (2001) The concept of age in marine modelling: I. Theory and preliminary model results. J Mar Syst 28(3–4):229–267CrossRefGoogle Scholar
  8. Denamiel C, Budgell WP, Toumi R (2013) The Congo River plume: impact of the forcing on the far-field and near-field dynamics. J Geophys Res Oceans 118:964–989. doi: 10.1002/jgrc.20062 CrossRefGoogle Scholar
  9. Eisma D, Kalf J (1984) Dispersal of Zaire river suspended matter in the estuary and Angola basin. Neatherlands Journal of Sea Research 17(2–4):385–411CrossRefGoogle Scholar
  10. Eisma D, van Bennekom AJ (1978) The Zaire River and estuary and the Zaire outflow in the Atlantic Ocean. Neth J Sea Res 12(3/4):255–272CrossRefGoogle Scholar
  11. Eisma D, Kalf J, van der Gaast SJ (1978) Suspended matter in the Zaire estuary and the adjacent Atlantic. Neatherlands Journal of Sea Research 12(3/4):382–406CrossRefGoogle Scholar
  12. Flather RA (1976) A tidal model of the north-west European continental shelf. Mémoires de la Société royale des sciences de Liège 6(10):141–164Google Scholar
  13. Geuzaine C, Remacle JF (2009) GMSH A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331. doi: 10.1002/nme.2579 CrossRefGoogle Scholar
  14. Graf WH, Altinakar MS (1993) Hydraulique fluviale, tome 1 : Écoulement permanent uniforme et non uniforme, Traité de génie civil de l’École polytechnique fédérale de Lausanne, vol 16, 1st edn. Presses polytechniques et universitaires romandes, CH-1015 LausanneGoogle Scholar
  15. Graf WH, Altinakar MS (1996) Hydraulique fluviale, tome 2 : Écoulement non permanent et phénomènes de transport, Traité de génie civil de l’École polytechnique fédérale de Lausanne, vol 16, 1st edn. Presses polytechniques et universitaires romandes, CH-1015 LausanneGoogle Scholar
  16. Grubišic V, Smith RB, Schär C (1995) The effect of bottom friction on shallow-water flow past an isolated obstacle. J Atmos Sci 52(11):1985–2005CrossRefGoogle Scholar
  17. Heezen BC, Menzies RJ, Schneider ED, Ewing WM, Granelli NCC (1964) Congo submarine canyon. Bull Am Assoc Pet Geol 48(7):1126–1149Google Scholar
  18. Hervouet J-M, Van Haren L (1996) Recent advances in numerical methods for fluid flow. In: Anderson M, Walling D, Bates P (eds) Floodplain processes. Wiley, Chichester, p 183Google Scholar
  19. Hopkins J, Lucas M, Dufau C, Sutton M, Stum J, Lauret O, Channelliere C (2013) Detection and variability of the Congo River plume from satellite derived sea surface temperature, salinity, ocean colour and sea level. Remote Sens Environ 139:365–385. doi: 10.1016/j.rse.2013.08.015 CrossRefGoogle Scholar
  20. Jansen PP (1979) Principles of River Engineering: The Non-tidal Alluvial River. Addison-Wesley Educational Publishers IncGoogle Scholar
  21. Lambrechts J, Comblen R, Legat V, Geuzaine C, Remacle JF (2008a) Multiscale mesh generation on the sphere. Ocean Dyn 58(5):461–473. doi: 10.1007/s10236-008-0148-3
  22. Lambrechts J, Hanert E, Deleersnijder E, Bernard PE, Legat V, Remacle JF, Wolanski E (2008b) A multi-scale model of the hydrodynamics of the whole Great Barrier Reef. Estuar Coast Shelf Sci 79(1):143–151. doi: 10.1016/j.ecss.2008.03.016
  23. Lyard F, Lefèvre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  24. Martinsen EA, Engedahl H (1987) Implementation and testing of a lateral boundary scheme as an open boundary condition in a barotropic ocean model. Coast Eng 11:603–627CrossRefGoogle Scholar
  25. Meulenbergh J (1968) Diffusion des eaux du fleuve Congo dans les eaux de l’Atlantique sud. Acad Roy Sc d’outre-mer. Cl Sci Tech (NS) 16(6):1–149Google Scholar
  26. Meulenbergh J (1974) La mangrove zaïroise. Acad Roy Sc d’outre-mer. Cl Sci Tech (NS) 17(8):1–86Google Scholar
  27. Monahan D (2008) Mapping the floor of the entire world ocean: the general bathymetric chart of the oceans. Journal of Ocean Technology 3(1):108Google Scholar
  28. Okubo A (1971) Oceanic diffusion diagrams. Deep-sea Res 18:789–802Google Scholar
  29. Peters JJ, Sterling A (1973) Étude de l’amélioration du bief maritime du fleuve Zaïre. Laboratoire de recherches hydrauliques, Borgerhout, Anvers Mateba 10:1–19Google Scholar
  30. Savoye B, Babonneau N, Dennielou B, Bez M (2009) Geological overview of the Angola-congo margin, the Congo deep-sea fan and its submarine valleys. Deep-Sea Res II 56:2169–2182. doi: 10.1016/j.dsr2.2009.04.001 CrossRefGoogle Scholar
  31. Smith SD, Banke EG (1975) Variation of the sea surface drag coefficient with wind speed. Q J R Meteorol Soc 101:665–673CrossRefGoogle Scholar
  32. Spagnol S, Wolanski E, Deleersnijder E, Brinkman R, McAllister F, Cushman-Roisin B, Hanert E (2002) An error frequently made in the evaluation of advective transport in two-dimensional lagrangian models of advection-diffusion in coral reef waters. Mar Ecol Prog Ser 235:299–302CrossRefGoogle Scholar
  33. Thomas CJ, Lambrechts J, Wolanski E, Traag VA, Blondel VD, Deleersnijder E, Hanert E (2014) Numerical modelling and graph theory tools to study ecological connectivity in the Great Barrier Reef. Ecol Model 272(0):160–174. doi: 10.1016/j.ecolmodel.2013.10.002 CrossRefGoogle Scholar
  34. Vanden Bossche JP, Bernacsek GM (1990) Source Book for the Inland Fishery Resources of Africa. No. vol. 1 in CIFA technical paper, Food and Agriculture Organization of the United NationsGoogle Scholar
  35. Wessel P, Smith WHF (1996) A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. J Geophys Res 101(B4):8741–8743CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yoann Le Bars
    • 1
  • Valentin Vallaeys
    • 1
  • Éric Deleersnijder
    • 2
    • 3
  • Emmanuel Hanert
    • 4
    Email author
  • Loren Carrere
    • 5
  • Claire Channelière
    • 6
  1. 1.Institute of Mechanics, Materials, and Civil Engineering (IMMC)Université catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Institute of Mechanics, Materials, and Civil Engineering (IMMC), Earth and Life Institute (ELI)Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Delft Institute of Applied Mathematics (DIAM)Delft University of TechnologyDelftThe Netherlands
  4. 4.Earth and Life Institute (ELI)Université catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.Collecte Localisation Satellites (CLS)Ramonville Saint-AgneFrance
  6. 6.Total S.A.,EP/DEV/TEC/GEOTour NewtonCourbevoieFrance

Personalised recommendations