Skip to main content

A 4D-variational ocean data assimilation application for Santos Basin, Brazil

Abstract

Aiming to achieve systematic ocean forecasting for the southeastern Brazilian coast, an incremental 4D-Var data assimilation system is applied to a regional ocean model focused mainly in the Santos Basin region. This implementation is performed within the scope of The Santos Basin Ocean Observing System (or Project Azul), a pilot project designed to collect oceanographic data with enough frequency and spatial coverage so to improve regional forecasts through data assimilation. The ocean modeling and data assimilation system of Project Azul is performed with the Regional Ocean Modeling System (ROMS). The observations used in the assimilation cycles include the following: 1-day gridded, 0.1° resolution SST from POES AVHRR; 1-day gridded, 0.3° composite of the MDT SSH from AVISO; and surface and subsurface hydrographic measurements of temperature and salinity collected with gliders and ARGO floats from Project Azul and from UK Met-Office EN3 project dataset. The assimilative model results are compared to forward model results and independent observations, both from remote sensing and in situ sources. The results clearly show that 4D-Var data assimilation leads to an improvement in the skill of ocean hindcast in the studied region.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Arango HG, Levin JC, Curchitser EN, Zhang B, Moore AM, Han W, Gordon AL, Lee CM, Girton JB (2011) Development of a hindcast/forecast model for the Philippine Archipelago. Oceanogr 20(1):58–69. doi:10.5670/oceanog.2011.04

  2. AVISO (1996) Merged TOPEX-Poseidon products (GDR-Ms). AVISO User Handbook. 3rd ed. http://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_tp_gdrm.pdf. Accessed 15 April 2015

  3. Berti S, dos Santos FA, Lacorata G, Vulpiani A (2011) Lagrangian drifter dispersion in the Southwestern Atlantic Ocean. J Phys Oceanogr 41:1659–1672. doi:10.1175/2011JPO4541.1

    Article  Google Scholar 

  4. Boebel O, Schmid C, Zenk W (1997) Glow and recirculation of Antarctic Intermediate Water across the Rio Grande Rise. J Geophys Res 102:20967–20986. doi:10.1029/97JC00977

    Article  Google Scholar 

  5. Broquet G, Edwards CA, Moore AM, Powell BS, Veneziani M, Doyle JD (2009a) Application of 4D-variational data assimilation to the California Current System. Dyn Atmos Oceans 48:69–91. doi:10.1016/j.dynatmoce.2009.03.001

    Article  Google Scholar 

  6. Broquet G, Moore AM, Arango HG, Edwards CA, Powell BS (2009b) Ocean state and surface forcing correction using the ROMS-IS4DVAR data assimilation system. Mercator Ocean Q Newsl 34:5–13

    Google Scholar 

  7. Broquet G, Moore AM, Arango HG, Edwards CA (2011) Corrections to ocean surface forcing in the California Current System using 4D-variational data assimilation. Ocean Model 36:116–132. doi:10.1016/j.ocemod.2010.10.005

    Article  Google Scholar 

  8. Campos EJD, Gonçalves JE, Ikeda Y (1995) Water mass characteristics and geostrophic circulation in the South Brazil Bight: summer of 1991. J Geophys Res 100:18537–18550. doi:10.1029/95JC01724

    Article  Google Scholar 

  9. Campos EJD, Ikeda Y, Castro BM, Gaeta SA, Lorenzzetti JA, Stevenson MR (1996) Experiment studies circulation in the western South Atlantic. Eos Trans 77:253–259. doi:10.1029/96EO00177

    Article  Google Scholar 

  10. Chapman DC (1985) Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J Phys Oceanogr 15:1060–1075. doi:10.1175/1520-0485

    Article  Google Scholar 

  11. Chen K, He R, Powell BS, Gawarkiewicz GG, Moore AM, Arango HG (2014) Data assimilative modeling investigation of Gulf Stream Warm Core Ring interaction with continental shelf and slope circulation. J Geophys Res Oceans 119:1–24. doi:10.1002/2014JC009898

    Google Scholar 

  12. Chin TM, Vazquez J, Armstrong E, Mariano A (2010) Algorithm Theoretic Basis Document: Multi-scale, motion-compensated analysis of sea surface temperature Version 1.1. ftp://mariana.jpl.nasa.gov/mur_sst/tmchin/docs/ATBD/atbd_1.1actual.pdf. Accessed 15 April 2015

  13. Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J Roy Meteor Soc 120:1367–1387. doi:10.1002/qj.49712051912

    Article  Google Scholar 

  14. Di Lorenzo E, Moore AM, Arango HG, Cornuelle BD, Miller AJ, Powell B, Chua BS, Bennett AF (2007) Weak and strong constraint data assimilation in the inverse Regional Ocean Modeling System (ROMS): development and application for a baroclinic coastal upwelling system. Ocean Model 16:160–187. doi:10.1016/j.ocemod.2006.08.002

    Article  Google Scholar 

  15. dos Santos FA, de Oliveira ALSC, Soares FLM, Carvalho GV, São Tiago PM, Santos NG, Garção HF, Pimentel FP, Boechat AC, Mariano LS, Bergman C, Rinaldi FL, Miranda TC, Cabral MM, da Cruz LMM, Pellegrini JAC, Assad LPF, Landau L, Fragoso MR (2015) Projeto Azul: operational oceanography in an active oil and gas area southeastern Brazil. In: Liu Y, Kerkering H, Weisberg RH (eds) Coastal ocean observing systems, 1st edn. Elsevier, London, pp 99–116. doi:10.1016/B978-0-12-802022-7.00020-1

    Chapter  Google Scholar 

  16. Flather RA (1976) A tidal model of the North-West European continental shelf. Mem Soc R Sci Liege 6:141–164

    Google Scholar 

  17. Haidvogel DB, Arango H, Budgell WP, Cornuelle BD, Curchitser E, Di Lorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J Comput Phys 227:3595–3624. doi:10.1016/j.jcp.2007.06.016

    Article  Google Scholar 

  18. Hansen DV, Poulin PM (1996) Quality control and interpolations of WOCE/TOGA drifter data. J Atmos Ocean Technol 13:900–909. doi:10.1175/1520-0426(1996)013

    Article  Google Scholar 

  19. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles: historical and real-time data. J Mar Syst 65:158–175. doi:10.1016/j.jmarsys.2005.11.019

    Article  Google Scholar 

  20. Janeković I, Powell BS, Matthews D, McManus MA, Sevadjian J (2013) 4D-Var data assimilation in a nested, coastal ocean model: a Hawaiian case study. J Geophys Res Oceans 118:5022–5035. doi:10.1002/jgrc.20389

    Article  Google Scholar 

  21. Kanamitsu M, Ebisuzaki W, Woolen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643. doi:10.1175/BAMS-83-11-1631

    Article  Google Scholar 

  22. Legeais J-F, Ollitrault M, Arhan M (2013) Lagrangian observations in the Intermediate Western Boundary Current of the South Atlantic. Deep-Sea Res II 85:109–126. doi:10.1016/j.dsr2.2012.07.028

    Article  Google Scholar 

  23. Lellouche JM, Regnier C (2015) For the GLOBAL Ocean Sea Physical Analysis and Forecasting Products GLOBAL_ANALYSIS_FORECAST_PHYS_001_002. Product User Manual. http://marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-002.pdf. Accessed 26 May 2015

  24. Marchesiello P, McWilliams JC, Shchepetkin A (2001) Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3:1–20

    Article  Google Scholar 

  25. Matthews D, Powell B, Milliff R (2011) Dominant spatial variability scales from observations around the Hawaiian Islands. Deep-Sea Res 58:979–987. doi:10.1016/j.dsr.2011.07.004

    Article  Google Scholar 

  26. Moore AM, Arango HG, Di Lorenzo E, Cornuelle BD, Miller AJ, Neilson DJ (2004) A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Model 7:227–258. doi:10.1016/j.ocemod.2003.11.001

    Article  Google Scholar 

  27. Moore AM, Arango HG, Broquet G, Powell BS, Weaver AT, Zavala-Garay J (2011a) The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part I-System overview and formulation. Prog Oceanogr 91:34–49. doi:10.1016/j.pocean.2011.05.004

    Article  Google Scholar 

  28. Moore AM, Arango HG, Broquet G, Edwards C, Veneziani M, Powell B et al (2011b) The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems: Part II - performance and application to the California Current System. Prog Oceanogr 91:50–73. doi:10.1016/j.pocean.2011.05.003

    Article  Google Scholar 

  29. Moore AM, Arango HG, Broquet G (2012) Estimates of analysis and forecast error variances derived from the adjoint of 4D-Var. Mon Weather Rev 140:3183–3203. doi:10.1175/MWR-D-11-00141.1

    Article  Google Scholar 

  30. Ngodock H, Muscarella P, Carrier M, Souopgui I, Smith S (2015) Assimilation of HF Radar Observations in the Chesapeake-Delaware Bay Region using the Navy Coastal Ocean Model (NCOM) and the Four-Dimensional Variational (4DVAR) Method. In: Liu Y, Kerkering H, Weisberg RH (eds) Coastal Ocean Observing Systems, 1st edn. Elsevier, London, pp 373–390. doi:10.1016/B978-0-12-802022-7.00020-1

    Chapter  Google Scholar 

  31. Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26:1–73

    Article  Google Scholar 

  32. Powell BS, Moore AM (2009) Estimating the 4DVAR analysis error from GODAE products. Ocean Dyn 59:121–138. doi:10.1007/s10236-008-0172-3

    Article  Google Scholar 

  33. Powell BS, Arango HG, Moore AM, Di Lorenzo E, Milliff RF, Foley D (2008) 4DVAR data assimilation in the Intra-Americas Sea with the Regional Ocean Modeling System (ROMS). Ocean Model 23:130–145. doi:10.1016/j.ocemod.2008.04.008

    Article  Google Scholar 

  34. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:347–404. doi:10.1016/j.ocemod.2004.08.002

    Article  Google Scholar 

  35. Silveira ICA (2007) O Sistema Corrente do Brasil na Bacia de Campos, RJ. Thesis, Universidade de São Paulo

  36. Silveira ICA, Calado L, Castro BM (2004) On the baroclinic structure of the Brazil Current-Intermediate Western Boundary Current system at 22°-23°S. Geophys Res Lett 31, LI4308. doi:10.1029/2004GL020036

    Article  Google Scholar 

  37. Silveira ICA, Lima JAM, Schmidt ACK, Belo WC, Sartori A, Francisco CPF et al (2008) Is the meander growth in the Brazil Current system off Southeast Brazil due to baroclinic instability? Dyn Atmos Ocean 45:187–207. doi:10.1016/j.dynatmoce.2008.01.002

    Article  Google Scholar 

  38. Stramma L, England M (1999) On the water masses and mean circulation of the South Atlantic Ocean. J Geophys Res 104:20863–20883. doi:10.1029/1999JC900139

    Article  Google Scholar 

  39. Sybrandy AL, Niiler PP (1991) WOCE/TOGA Lagrangian drifter construction manual. WOCE Report 63. Scripps Institution of Oceanography, San Diego, California

  40. Zavala-Garay J, Wilkin JL, Arango HG (2012) Predictability of mesoscale variability in the East Australian current given strong-constraint data assimilation. J Phys Oceanogr 42:1402–1420. doi:10.1175/JPO-D-11-0168.1

    Article  Google Scholar 

  41. Zhang WG, Wilkin JL, Arango HG (2010) Towards an integrated observation and modeling system in the New York Bight using variational methods. Part I: 4DVAR data assimilation. Ocean Model 35:119–133. doi:10.1016/j.ocemod.2010.08.003

    Article  Google Scholar 

Download references

Acknowledgments

Project Azul is funded by BG Brazil in the scope of ANP Research and Development program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mauricio da Rocha Fragoso.

Additional information

This article is part of the Topical Collection on Coastal Ocean Forecasting Science supported by the GODAE OceanView Coastal Oceans and Shelf Seas Task Team (COSS-TT)

Responsible Editor: Pierre De Mey

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

da Rocha Fragoso, M., de Carvalho, G.V., Soares, F.L.M. et al. A 4D-variational ocean data assimilation application for Santos Basin, Brazil. Ocean Dynamics 66, 419–434 (2016). https://doi.org/10.1007/s10236-016-0931-5

Download citation

Keywords

  • 4D-Var
  • ROMS
  • Data assimilation
  • Santos Basin
  • Regional Ocean Observing System
  • Project Azul